Polyaniline/AgCl Hybrid Materials for Selective Determination of Dopamine by Electrochemical Methods

DOI: 10.4236/ajac.2012.35051   PDF   HTML   XML   3,546 Downloads   7,085 Views   Citations

Abstract

A promising electrochemical sensor based on PANI/AgCl hybrid material has been developed. The organic/inorganic hybrid material has exhibited good electrocatalytic properties by cyclic voltammetry measurement and differential pulse voltammetry. The oxidation overpotential of dopamine decreased dramatically, and the oxidation peak current increased significantly at PANI/AgCl/GCE compared to those obtained at PANI/GCE, AgCl/GCE and bare GCE, corresponding to the synergistic effect between PANI and inorganic particle AgCl. Under the optimized conditions, the linear response in the concentration range of 0.7 to 6.0 μM for the selective determination dopamine on the PANI/AgCl/GCE is obtained with a detection limit of 5.4 × 10–8 M (S/N = 3) using differential pulse voltammetry. The results indicated that the modified electrode can be used to determine dopamine without the interference from ascorbic acid and ensure high sensitivity and good selectivity.

Share and Cite:

S. Zhou, M. Xie, X. Yuan, F. Zeng, W. Zou and D. Yuan, "Polyaniline/AgCl Hybrid Materials for Selective Determination of Dopamine by Electrochemical Methods," American Journal of Analytical Chemistry, Vol. 3 No. 5, 2012, pp. 385-391. doi: 10.4236/ajac.2012.35051.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Guzmán, G. Orozco, Y. Verde, S. Jiménez, L. A. Godínez, E. Juaristi and E. Bustos, “Hydrogen Peroxide Sensor Based on Modified Vitreous Carbon with Multiwall Carbon Nanotubes and Composites of Pt Nanoparticles-Dopamine,” Electro-chimica Acta, Vol. 54, No. 6, 2009, pp. 1728-1732. doi:10.1016/j.electacta.2008.09.072
[2] Y. Zhang and J. B. Zheng, “Comparative Investigation on Electrochemical Behavior of Hydroquinone at Carbon Ionic Liquid Electrode, Ionic Liquid Modified Carbon Paste Electrode and Carbon Paste Electrode,” Electrochimica Acta, Vol. 52, No. 25, 2007, pp. 7210-7216. doi:10.1016/j.electacta.2007.05.039
[3] C. S. Shan, H. E. Yang, D. X. Han, Q. X. Zhang, Ari. Ivaskac and L. Niu, “Electrochemical Determination of NADH and Ethanol Based on Ionic Liquid-Functionalized Grapheme,” Biosensor Bioelectronics, Vol. 25, No. 6, 2010, pp.1504-1508. doi:10.1016/j.bios.2009.11.009
[4] J. Li and X. Q. Lin, “Simultaneous Determination of Dopamine and Serotonin on Gold Nanocluster/Overoxidized-Polypyrrole Composite Modified Glassy Carbon Electrode,” Sensors and Actuators B: Chemical, Vol. 124, No. 2, 2007, pp. 486-493. doi:10.1016/j.snb.2007.01.021
[5] Z. Y. Wang, S. N. Liu, P. Wu and C. X. Cai, “Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes,” Analytical Chemical, Vol. 81, No. 4, 2009, pp. 1638-1645. doi:10.1021/ac802421h
[6] M. A. Dennis, K. Michael, M. M. Khodabakhsh, N. Stuart and W. Michael, “Electrochemical Activation of Carbon Electrodes in Base: Minimization of Do-pamine Adsorption and Electrode Capacitance,” Analytical Chemical, Vol. 61, No. 23, 1989, pp. 2603-2608. doi:10.1021/ac00198a004
[7] B. J. Christopher, P. M. Jennifer and V. B. Jill, “Review: Carbon Nanotube Based Electro-chemical Sensors for Biomolecules,” Analytica Chimica Acta, Vol. 662, No. 2, 2010, pp. 105-127. doi:10.1016/j.aca.2010.01.009
[8] C. Martin, “The Parkinson’s Puzzle: New Developments in Our Understanding of Parkinson’s Disease Have Generated a Number of Promising New Treatments for This Disabling Condition,” Chemistry in Britian, Vol. 34, No. 9, 1998, pp. 40-42.
[9] A. Heinz, H. Przuntek, G. Winterer and A. Pietzcker, “Clinical Aspects and Follow-Up of Dopamine-Induced Psychoses in Continuous Dopaminergic Therapy and Their Implications for the Dopa-mine Hypothesis of Schi-zophrenic Symptoms,” Der Nerve-narzt, Vol. 66, No. 9, 1995, pp. 662-669.
[10] R. M. Wight-man, L. J. May and A. C. Michael, “Detection of Dopamine Dynamics in the Brain,” Analytical Chemical, Vol. 60, No. 13, 1988, pp. 769-779. doi:10.1021/ac00164a001
[11] G. Y. Jin, Y. Z. Zhang and W. X. Cheng, “Poly(p-Aminobenzene Sulfonic Acid)-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopa-mine and Ascor-bic Acid,” Sensors and Actuators B: Chemical, Vol. 107, No. 2, 2005, pp. 528-534. doi:10.1016/j.snb.2004.11.018
[12] H. S. Wang, T. H. Li, W. L. Jia and H. Y. Xu, “Highly Selective and sensitive Determination of Dopamine Using a Nafion/Carbon Nanotubes coated Poly(3-Methylthio- phene) Modified Electrode,” Biosensors and Bioelectronics, Vol. 22, No. 5, 2006, pp. 664-669. doi:10.1016/j.bios.2006.02.007
[13] T. Selvaraju and R. Ramaraj, “Simultaneous Determination of Ascorbic Acid, Do-pamine and Serotonin at Poly (Phenosafranine) Modified Elec-trode,” Electrochemistry Communications, Vol. 5, No. 8, 2003, pp. 667-672. doi:10.1016/S1388-2481(03)00151-6
[14] Y. X. Li and X. Q. Lin, “Simultaneous Electroanalysis of Dopamine, Ascorbic Acid and Uric Acid by Poly (Vinyl Alcohol) Covalently Modified Glassy Carbon Electrode,” Sensors and Actuators B: Chemical, Vol. 115, No. 1, 2006, pp. 134-139. doi:10.1016/j.snb.2005.08.022
[15] H. R. Zare, N. Nasirizadeh and M. M. Ardakani, “Electrochemical Properties of a Tetrab-romo-Pbenzoquinone Modified Carbon Paste Electrode. Application to the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid,” Journal of Electroanalytical Chemistry, Vol. 577, No. 1, 2005, pp. 25-33. doi:10.1016/j.jelechem.2004.11.010
[16] S. Yunus, A. Attout and P. Bertrand, “Controlled Aniline Polymerization Strategies for Polyaniline Micro- and Nano Self-Assembling into Practical Electronic Devices” Langmuir, Vol. 25, No. 3, 2009, pp. 1851-1854. doi:10.1021/la803034q
[17] J. Jang, J. Ha and J. Cho, “Fabrication of Water-Dispersible Polyani-line-Poly(4-Styrenesulfonate) Nanoparticles for Inkjet-Printed Chemical-Sensor Applications,” Advanced Materidals, Vol. 19, No. 13, 2007, pp. 1772- 1775. doi:10.1002/adma.200602127
[18] Y. Qiao, S. J. Bao, C. M. Li, X. Q. Cui, Z. S. Lu and J. Guo, “Nanostructured Polyani-fine/Titanium Dioxide Composite Anode for Microbial Fuel Cells.,” Acs Nano, Vol. 2, No. 1, 2008, pp.113-119. doi:10.1021/nn700102s
[19] Z. M. Zhang, J. Sui, L. J. Zhang, M.X. Wan, Y. Wei and L. M. Yu, “Synthesis of Polyaniline with a Hollow, Octahedral Morphology by Using a Cuprous Oxide Template,” Advanced Materidals, Vol. 17, No. 23, 2005, pp. 2854-2857. doi:10.1002/adma.200501114
[20] J. Han, G. Song and R. Guo, “Nanostructure-Based Leaf- Like Polyaniline in the Presence of an Amphiphilic Tri-block Copolymer,” Advanced Materidals, Vol. 19, No. 19, 2007, pp. 2993-2999. doi:10.1002/adma.200602635
[21] T. Yin, W. Wei and J. Zeng, “Selective Detection of Dopamine in the Presence of Ascorbic Acid by Use of Glassy-Carbon Electrodes Modified with Both Polyaniline Film and Multi-Walled Carbon Nanotubes with Incorporated Beta-Cyclodextrin,” Analytical and Bioanalytical Chemistry, Vol. 386, No. 7-8, 2006, pp. 2087-2094. doi:10.1007/s00216-006-0845-z
[22] S. R. Ali, Y. F. Ma, R. R. Parajuli, Y. Balogun, W. Y. C. Lai and H. X. He, “A Nonoxi-dative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine,” Analytical Chemical, Vol. 79, No. 6, 2007, pp. 2583-2587. doi:10.1021/ac062068o
[23] V. Zucolotto, M. Ferreira, M. R. Cordeiro, C. J. L. Constantino, W. C. Moreira and O. N. Oliveira, “Nanoscale Processing of Poly-aniline and Phthalocyanines for Sensing Applications,” Sensors and Actuators B: Chemical, Vol. 113, No. 2, 2006, pp. 809-815. doi:10.1016/j.snb.2005.03.114
[24] K. Pihel, Q. D. Walker and R. M. Wightman, “Overoxidized Polypyrrole-Coated Carbon Fiber Microelectrodes for Dopamine Measurements with Fast-Scan Cyclic Vol- tammetry,” Analytical Chemical, Vol. 68, No. 13, 1996, pp. 2084-2089. doi:10.1021/ac960153y
[25] W. Yan, X. M. Feng, X. J. Chen, X. H. Li and J. J. Zhu, “A Selec-tive Dopamine Biosensor Based on AgCl@polyaniline Core-Shell Nanocomposites,” Bioelectro-chemistry, Vol. 72, No. 1, 2008, pp. 21-27. doi:10.1016/j.bioelechem.2007.07.003
[26] X. M. Feng, Y. Liu, C. L. Lu, W. H. Hou and J. J. Zhu, “One-Step Synthesis of Agcl/Polyaniline Core-Shell Composites with Enhanced Electroactivity,” Nanotechnology, Vol. 17, No. 14, 2006, pp. 3578-3583. doi:10.1088/0957-4484/17/14/037
[27] A. Rahy and D. J. Yang, “Synthesis of Highly Conductive Polyaniline Nanofibers,” Materials Letters, Vol. 62, No. 28, 2008, pp. 4311-4314. doi:10.1016/j.matlet.2008.06.057
[28] S. L. Zhou, S. S. Mo, W. J. Zou, F. P. Jiang, T. X. Zhou and D. S.Yuan, “Preparation of Polyaniline/2-Dimensional Hexagonal Mesoporous Carbon Composite for Supercapacitor,” Synthetic Metals, Vol. 161, No. 15-16, 2011, pp. 1623-1628. doi:10.1016/j.synthmet.2011.05.028
[29] D. Zheng, J. S. Ye, L. Zhou, Y. Zhang and C. Z. Yu, “Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid on Ordered Mesoporous Carbon/Nafion Composite Film,” Journal of Elec-troanalytical Chemistry, Vol. 625, No. 1, 2009, pp. 82-87. doi:10.1016/j.jelechem.2008.10.012
[30] J. W. Mo and B. Ogorevc, “Simultaneous Measurement of Dopamine and Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on Overoxidized Poly(1,2-Phenylenediamine)-Coated Carbon Fiber,” Analytical Chemical, Vol. 73, No. 6, 2001, pp. 1196-1202. doi:10.1021/ac0010882

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.