Multivariate Statistical Analysis of Phyllite Samples Based on Chemical (XRF) and Mineralogical Data by XRD

DOI: 10.4236/ajac.2012.35047   PDF   HTML     5,442 Downloads   8,992 Views   Citations


It is presented the results obtained of a multivariate statistical analysis concerning the chemical and phase composition, as a characterization purpose, carried out with 52 rock phyllite samples selected from the provinces of Almería and Granada (SE Spain). Chemical analysis was performed by X-ray fluorescence (XRF). Crystalline phase analysis was performed by X-ray powder diffraction (XRD) and the mineralogical composition was then deduced. Quantification of weight loss (100? and 1000?C) was carried out by thermal analysis. The aims of this investigation were to analyze and compare the chemical and mineralogical composition of all these samples and to find similarities and differences between them to allow a classification. Several correlations between results of the characterization techniques have been also investigated. All the data have been processed using the multivariate statistical analysis method. The XRF macro-elements (10) and microelements (39) data generate one macrogroup with two new subgroups (1 and 2), and an isolated sample. In subgroup 1 of macroelements, a positive correlation was found between XRF results and geographic location characterized by lower MgO content, which is associated to its geological origins. When multivariate statistical analysis is applied to results obtained by XRD, two groups appear: the first one with a sample with zero percentage of iron oxide and the second one with the rest of the samples, which is classified in two groups. A correlation is observed between the alkaline content (XRF) and illite (XRD), CaO and MgO with dolomite and indirectly between the weight loss after heating at 1000?C and the contents of phase minerals that lose structural water (illite + chlorite) or carbon dioxide (dolomite). The present investigation has interest and implications for geochemistry and analytical chemistry concerning earth rocks and silicate raw materials.

Share and Cite:

E. Garzón, A. Ruíz-Conde and P. Sánchez-Soto, "Multivariate Statistical Analysis of Phyllite Samples Based on Chemical (XRF) and Mineralogical Data by XRD," American Journal of Analytical Chemistry, Vol. 3 No. 5, 2012, pp. 347-363. doi: 10.4236/ajac.2012.35047.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. S. Valera, A. P. Ribeiro, F. R. Valenzuela-Díaz, A. Yoshiga, W. Ormangji and S. M. Toffoli, “The Effect of Phyllite as a Filler for PVC Plastisols,” Annual Technical Conference-Society of Plastics Engineers, Vol. 3, No. 60, 2002, pp. 3949-3953.
[2] P. Sousa, “Tecnología de Argilas Aplicada as Argilas Brasileiras,” Editorial E. Blutcher Ltd., Sao Paulo, 1975.
[3] A. Ramo, “Filita Región de Murcia Digital,” 2009.
[4] I. Alcántara-Ayala, “The Tor-vizcón, Spain, Landslide of February 1996, the Role of Lithology in a Semi-Arid Climate,” Geophysical International, Vol. 38, 1999, pp. 1-3.
[5] L. Sarasola, “Cerro de la Peluca, Ona de Málaga,” 2002.
[6] E. Garzón, I. G. García-Rodríguez, A. Ruiz-Conde and P. J. Sánchez-Soto, “Phyllites Used as Waterproofing Layer Materials for Greenhouses Crops in Spain: Multivariate Statiscal Analysis Applied to Their Classification Based on X-Ray Fluorescence Analysis,” X-Ray Spectrometry, Vol. 38, No. 5, 2009, pp. 429-438. doi:10.1002/xrs.1199
[7] B. Oliva-Urcia, J. M. Rahl, A. M. Schleicher and J. M. Parés, “Correlation between the Anisotropy of the Magnetic Susceptibility, Strain Ellipsoids and X-Ray Texture Goniometry in Phyllites from Créete, Greece,” Tectonophysics, Vol. 486, No. 1-4, 2010, pp. 120-131. doi:10.1016/j.tecto.2010.02.013
[8] X. M. Zhang, et al., “Stability Analysis of Tunnel Driven in Stratified Anisotropic Rockmass,” American Society of Civil Engineers, 2009.
[9] T. Casia, A. Rodrigues, M. Gio-vanna and H. Alves, “Bio-engineering Techniques Associated with Soil Nailing Ap- plied to Slope Stabilization and Erosion Control,” American Society of Civil Engineers, Vol. 11, No. 2, 2010, pp. 43-48. doi:10.1061/(ASCE)1527-6988(2010)11:2(43)
[10] F. J. Suarez, F. A. Navarro and A. Ortiz, “Evolución Histórica de la Morfología Urbana y la Tipología Constructiva en el Altiplano Granadino,” Congreso Nacional de Historia de la Construcción, Vol. 2, 2005, pp. 1029- 1038.
[11] ANSE, “ANSE Denuncia: La Rotura de Los Taludes del Vertedero del Gorguel Provoca la Salida de Las Basuras al Exterior,” 2009.
[12] Anónimo, “Embalse de Beninar,” 2009.
[13] A. Castillo, “Itinerario Hidrogeológico a Través de la Carretera Más Alta de Europa: Granada—Sierra Nevada (Veleta),” Hidrogeología y Recursos Hidráulicos, 2010, pp. 301-310.
[14] L. M. Carceller, “Al Sur de Sierra Nevada,” Suplemento El Caminante de El Mundo, 2006.
[15] A. Trobat, “Las dos Alpujarras al Sur de Granada,” Suplemento El Caminante de El Mundo, 2006.
[16] J. L. Mendoza, A. Fajardo and R. Carrasco, “Rocas y Minerales Industriales de Aplicación Ambiental en Agricultura e Industria,” Internacional Symposium of Environmental Geology, 2002.
[17] E. Garzón, I. G. García-Rodríguez, R. Bono, A. Ruiz-conde and P. J. Sánchez-Soto, “Composición y Propie- dades Tecnológicas de Las Filitas de un Yacimiento de Berja (Almería),” Cerámica Información, Vol. 341, 2007, pp. 43-55.
[18] L. G. Schultz, “Quantitative Interpretation of Mineralogical Composition from X-Ray and Chemical Data for the Pierre Shale,” US Geological Survey, Professional Papers, 1964.
[19] P. E. Biscaye, “Min-eralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Sea and Oceans,” Bulletin of the Geological Society of Ame- rica, Vol. 76, 1965, pp. 803-831. doi:10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[20] F. López-Aguayo, E. Galán-Huertos and J. L. Martín-Vivaldi, “Sobre la Mineralogía y Génesis de Dos Yacimientos de Caolín en la Provincia de Valencia,” Estudios Geológicos, Vol. 27, 1971, pp. 145-152.
[21] J. Parras, C. Sánchez-Jiménez, M. Rodas and F. J. Luque, “Ceramic Applications of Middle Ordovician Shales from Central Spain,” Applied Clay Science, Vol. 11, No. 1, 1996, pp. 25-41. doi:10.1016/0169-1317(96)00003-8
[22] M. M. Jordán, A. Boix, T. Sanfeliú and C. de la Fuente, “Firing Transformations of Cretaceous Clays Used in the Manufacturing of Ceramic Tiles,” Applied Clay Science, Vol. 14, No. 4, 1999, pp. 225-234. doi:10.1016/S0169-1317(98)00052-0
[23] B. Dolinar, “A Simplified Method for Determining the External Specific Surface Area of Non-Swelling Fine Grained Soils,” Applied Clay Science, in Press, 2012.
[24] P. J. Sánchez-Soto, M. C. Jimé-nez de Haro, L. A. Pérez- Maqueda, I. Varona and J. L. Pérez-Rodríguez, “Effects of Dry Grinding on the Structural Changes of Kaolinite Powders,” Journal of the American Ce-ramic Society, Vol. 83, No. 7, 2000, pp. 1649-1657. doi:10.1111/j.1151-2916.2000.tb01444.x
[25] P. J. Sánchez-Soto, “Efecto del Tratamiento Mecánico por Molienda en Las Propiedades Texturales de Pirofilita,” Boletín de la Sociedad Espa?ola de Cerámica y Vidrio, Vol. 48, 2009, pp. 59-68.
[26] H. Mommsen, “Provenance Determination of Pottery by Trace Element Analysis: Problems, Solutions and Applications,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 247, No. 3, 2001, pp. 657-662. doi:10.1023/A:1010675720262
[27] E. K. Bakraji, “Application of Multivariate Statistical Methods to Classify Archaeological Pottery from Tel-Alramad Site, Syria, Based on X-Ray Fluorescence Analysis,” X-Ray Spectrometry, Vol. 35, No. 3, 2006, pp. 190-194. doi:10.1002/xrs.893
[28] P. Sánchez-Soto, A. Ruiz-Conde, R. Bono, M. Raigón and E. Garzón, “Thermal Evolution of a Slate,” Journal of Thermal Analysis and Calo-rimetry, Vol. 90, No. 1, 2007, pp. 133-141. doi:10.1007/s10973-007-7751-2

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.