Poly(ethylene glycol) and poly(N-vinlypyrrolidone) for improved porcine islet cryopreservation


Water-soluble polymers poly(ethylene glycol) (PEG) and poly(N-vinylpyrrolidone) (PVP) were used to study cryopreservation of porcine islets. DMSO was used as control. The effects of polymer purity, molecular weight (MW) and concentration on islet viability were investigated. The results show that both PVP and PEG are good cyroprotectant candidates for islet cryopreservation. The effects of polymer purity and concentration were significant. Increasing concentration significantly increased the islet viability. However, after the concentration reached a certain level, there was no significant difference in viability probably due to increased viscosity of the polymer solution. The effect of polymer MW was not significant. It is concluded that polymers can be a suitable cryoprotectant for porcine islet cryopreservation. The islet viability is polymer concentration-dependent. It seems that PVP is a better cryoprotectant candidate as compared to PEG because the former showed a fast dissolution rate in culture medium and lower viscosity. The polymer concentration at 30% appears to be the optimal for cryopreservation from the viewpoint of islet viability and medium viscosity.

Share and Cite:

Xie, D. , Jules, S. , Weng, Y. , Zhou, Y. , Sidner, R. and Pescovitz, M. (2012) Poly(ethylene glycol) and poly(N-vinlypyrrolidone) for improved porcine islet cryopreservation. Journal of Biomedical Science and Engineering, 5, 263-269. doi: 10.4236/jbise.2012.55033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bacha, F., Lee, S., Gungor, N. and Arslanian, S.A. (2010) From pre-diabetes to type 2 diabetes in obese youth Pathophysiological characteristics along the spectrum of glucose dysregulation. Diabetes Care, 33, 2225-2231. doi:10.2337/dc10-0004
[2] Biancone, L. and Ricordi, C. (2002) Pancreatic islet transplantation: An update. Cell Transplant, 11, 309-311.
[3] Hardikar, A.A., Risbud, M.V. and Bhonde, R.R. (2000) Improved post-cryopreservation recovery following encapsulation of islets in chitosan-alginate microcapsules. Transplantation Proceedings, 32, 824-825. doi:10.1016/S0041-1345(00)00995-7
[4] Cattral, M.S., Warnock, G.L., Kneteman, N.M., Halloran, P.F. and Rajotte, R.V. (1993) The effect of cryopreservation on the survival and MHC antigen expression of murine islet allografts. Transplantation, 55, 159-163. doi:10.1097/00007890-199301000-00029
[5] Charles, K., Harland, R.C., Ching, D. and Opara, E.C. (2000) Storage and microencapsulation of islets for transplantation. Cell Transplantation, 9, 33-38.
[6] Janjic, D., Andereggen, E., Deng, S., Bartley, C., Buhler, L., Morel, P. and Wollheim, C.B. (1996) Improved insulin secretion of cryopreserved human islets by antioxidant treatment. Pancreas, 13, 166-172. doi:10.1097/00006676-199608000-00008
[7] Langer, S., Lau, D., Eckhardt, T., Jahr, H., Brandhorst, H., Brandhorst, D., Hering, B.J., Federlin, K. and Bretzel, R.G. (1999) Viability and recovery of frozen-thawed human islets and in vivo quality control by xenotransplantation. Journal of Molecular Medicine, 77, 172-174. doi:10.1007/s001090050330
[8] Miyamoto, M., Kenmochi, T., Nakagawa, Y., Une, S., Moldovan, S., Atiya, A., Benhamou, P.Y., Brunicardi, F.C., Ohyanagi, H. and Mullen, Y. (1995) Immunogenicity of cryopreserved human islets. Transplantation Proceedings, 27, 3406-3408.
[9] Rich, S.J., Swift, S., Thirdborough, S.M., Rumford, G., James, R.F. and London, N.J. (1993) Cryopreservation of rat islets of Langerhans: A comparison of two techniques. Cryobiology, 30, 407-412. doi:10.1006/cryo.1993.1040
[10] Rich, S.J., Swift, S., Thirdborough, S.M., James, R.F. and London, N.J. (1994) Islet cryopreservation: A detailed study of total functional losses. Transplantation Proceedings, 26, 823-824.
[11] Arakawa, T., Carpenter, J.F., Kita, Y.A. and Crowe, J.H. (1990) The basis for toxicity of certain cryoprotectants: A hypothesis. Cryobiology, 27, 401-415. doi:10.1016/0011-2240(90)90017-X
[12] Monroy, B., Honiger, J., Darquy, S. and Reach, G. (1997). Use of polyethyleneglycol for porcine islet cryopreservation. Cell Transplantation, 6, 613-621. doi:10.1016/S0963-6897(97)00097-3
[13] Maruyama, M., Kenmochi, T., Sakamoto, K., Arita, S., Iwashita, C. and Kashiwabara, H. (2004) Simplified method for cryopreservation of islets using hydroxyethyl starch and dimethyl sulfoxide as croprotectants. Transplantation Proceedings, 36, 1133-1134. doi:10.1016/j.transproceed.2004.04.016
[14] Inaba, K., Zhou, D., Yang, B., Vacek, I. and Sun, A.M. (1996) Normalization of diabetes by xenotransplantation of cryopreserved microencapsulated pancreatic islets. Application of a new strategy in islet banking. Transplantation, 61, 175-179. doi:10.1097/00007890-199601270-00001
[15] O’Neil, L., Paynter, S.J. and Fuller, B.J. (1997) Vitrification of mature mouse oocytes: Improved results following addition of polyethylene glycol to a dimethyl sulfoxide solution. Cryobiology, 34, 295-301. doi:10.1006/cryo.1997.2007
[16] Meglasson, M.D. and Matschinsky, F.M. (1984) New perspectives on pancreatic islet glucokinase. American Journal of Physiology, 246, E1-E13.
[17] Murata, T., Miwa, I., Toyoda, Y. and Okuda, J. (1993) Inhibition of glucose-induced insulin secretion through inactivation of glucokinase by glyceraldehyde. Diabetes, 42, 1003-1009. doi:10.2337/diabetes.42.7.1003
[18] Haaf, F., Sanner, A. and Straub, F. (1985) Polymers of N-vinylpyrrolidone: Synthesis, characterization and uses. Polymer Journal, 17, 143-152. doi:10.1295/polymj.17.143

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.