N-acetyl-L-cysteine amide protects retinal pigment epithelium against methamphetamine-induced oxidative stress


Methamphetamine (METH), a highly addictive drug used worldwide, induces oxidative stress in various animal organs. Recent animal studies indicate that methamphetamine also induces oxidative stress in the retina, which is an embryonic extension of the forebrain. The aim of this study, therefore, was to evaluate the protecttive effects of N-acetylcysteine amide (NACA) against oxidative stress induced by METH in retinal pigment epithelium (RPE) cells. Our studies showed that NACA protected against METH-induced oxidative stress in retinal pigment epithelial cells. Although METH significantly decreased glutathione (GSH) levels and increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, these returned to control levels with NACA treatment. Overall observations indicated that NACA protected RPE cells against oxidative cell damage and death by inhibiting lipid peroxidation, scavenging ROS, increasing levels of intracellular GSH, and maintaining the antioxidant enzyme activity and the integrity of the bloodretinal barrier (BRB). The effectiveness of NACA should be further evaluated to determine its potential for the treatment of numerous retinal diseases caused by oxidative stress.

Share and Cite:

W. Carey, J. , Tobwala, S. , Zhang, X. , Banerjee, A. , Ercal, N. , Y. Pinarci, E. and Karacal, H. (2012) N-acetyl-L-cysteine amide protects retinal pigment epithelium against methamphetamine-induced oxidative stress. Journal of Biophysical Chemistry, 3, 101-110. doi: 10.4236/jbpc.2012.32012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Office of Applied Studies. (2006) Treatment episode data set (TEDS) highlights—2004: National admissions to substance abuse treatment services, DHHS Publication, Rockville. http://www.oas.samhsa.gov/dasis.htm#teds4
[2] Office of Applied Studies. (2003) Emergency department trends from drug abuse warning network, final estimates 1995-2002. DHHS Publication, Rockville.
[3] Gonzales, R., Mooney, L. and Rawson, R.A. (2010) The methamphetamine problem in the United States. Annual Review of Public Health, 31, 385-398. doi:10.1146/annurev.publhealth.012809.103600
[4] Zhang, X., Banerjee, A., Banks, W.A. and Ercal, N. (2009) N-acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Brain Research, 1275, 87-95. doi:10.1016/j.brainres.2009.04.008
[5] Harold, C., Wallace, T., Friedman, R., Gudelsky, G. and Yamamoto, B. (2000) Methamphetamine selectively alters brain glutathione. European Journal of Pharmacology, 400, 99-102. doi:10.1016/S0014-2999(00)00392-7
[6] Moszczynska, A., Turenne, S. and Kish, S.J. (1998) Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neuroscience Letters, 255, 49-52. doi:10.1016/S0304-3940(98)00711-3
[7] Acikgoz, O., Gonenc, S., Kayatekin, B.M., Uysal, N., Pekcetin, C., Semin, I. and Güre, A. (1998) Methamphetamine causes lipid peroxidation and an increase in superoxide dismutase activity in the rat striatum. Brain Research, 813, 200-202. doi:10.1016/S0006-8993(98)01020-8
[8] Gluck, M.R., Moy, L.Y., Jayatilleke, E., Hogan, K.A., Manzino, L. and Sonsalla, P.K. (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. Journal of Neurochemistry, 79, 152-160. doi:10.1046/j.1471-4159.2001.00549.x
[9] Melo, P., Pinazo-Durán, M.D., Salgado-Borges, J. and Tavares, M.A. (2008) Correlation of axon size and myelin occupancy in rats prenatally exposed to methamphetamine. Brain Research, 1222, 61-68. doi:10.1016/j.brainres.2008.05.047
[10] Giros, B., Jaber, M., Jones, S.R., Wightman, R.M. and Caron, M.G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606-612. doi:10.1038/379606a0
[11] Graham, D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Molecular Pharmacology, 14, 633-643.
[12] Stumm, G., Schlegel, J., Sch?fer, T., Würz, C., Mennel, H.D., Krieg, J.C. and Vedder, H. (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. The FASEB Journal, 13, 1065-1072.
[13] Belda, J.I., Romá, J., Vilela, C., Puertas, F.J., Díaz-Llopis, M., Bosch-Morell, F. and Romero, F.J. (1999) Serum vitamin e levels negatively correlate with severity of age-related macular degeneration. Mechanisms of Ageing and Development, 107, 159-164. doi:10.1016/S0047-6374(98)00144-4
[14] Kowluru, R.A. (2003) Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes, 52, 818-823. doi:10.2337/diabetes.52.3.818
[15] Saccà, S.C. and Izzotti, A. (2008) Oxidative stress and glaucoma: Injury in the anterior segment of the eye. Progress in Brain Research, 173, 385-407. doi:10.1016/S0079-6123(08)01127-8
[16] Green, W.R., McDonnell, P.J. and Yeo, J.H. (1985) Pathologic features of senile macular degeneration. Ophthalmology, 92, 615-627.
[17] Green, W.R. and Key, S.N. (1977) Senile macular degeneration: A histopathologic study. Transactions of the American Ophthalmological Society, 75, 180-254.
[18] Spraul, C.W., Lang, G.E. and Grossniklaus, H.E. (1996) Morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration. Investigative Ophthalmology & Visual Science, 37, 2724-2735.
[19] Zarbin, M.A. (1998) Age-related macular degeneration: Review of pathogenesis. European Journal of Ophthalmology, 8, 199-206.
[20] Lu, L., Oveson, B.C., Jo, Y., Lauer, T.W., Usui, S., Komeima, K., Xie, B. and Campochiaro, P.A. (2009) Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxidants & Redox Signaling, 11, 715-724. doi:10.1089/ars.2008.2171
[21] Stromland, K. and Pinazo-Durán, M.D. (2002) Ophthalmic involvement in the fetal alcohol syndrome: Clinical and animal model studies. Alcohol and Alcoholism, 37, 2-8. doi:10.1093/alcalc/37.1.2
[22] Shaw, H.E.J., Lawson, J.G. and Stulting, R.D. (1985) Amaurosis fugax and retinal vasculitis associated with methamphetamine inhalation. Journal of Clinical NeuroOphthalmology, 5, 169-176.
[23] Wallace, R.T., Brown, G.C., Benson, W. and Sivalingham, A. (1992) Sudden retinal manifestations of intranasal cocaine and methamphetamine abuse. American Journal of Ophthalmology, 114, 158-160.
[24] Kumar, R.L., Kaiser, P.K. and Lee, M.S. (2006) Crystalline retinopathy from nasal ingestion of methamphetamine. Retina, 26, 823-824. doi:10.1097/01.iae.0000244275.03588.ad
[25] Melo, P., Rodrigues, L.G., Pinazo-Durán, M.D. and Tavares, M.A. (2005) Methamphetamine and lipid peroxidation in the rat retina. Birth Defects Research Part A: Clinical and Molecular Teratology, 73, 455-460. doi:10.1002/bdra.20138
[26] Prudêncio, C., Abrantes, B., Lopes, I. and Tavares, M.A. (2002) Structural and functional cellular alterations underlying the toxicity of methamphetamine in rat retina and prefrontal cortex. Annals of the New York Academy of Sciences, 965, 522-528.
[27] Rodrigues, L.G., Tavares, M.A., Wood, J.P.M., Schmidt, K. and Osborne, N.N. (2004) Methamphetamine exacerbates the toxic effect of kainic acid in the adult rat retina. Neurochemistry International, 45, 1133-1141. doi:10.1016/j.neuint.2004.06.011
[28] Penugonda, S., Mare, S., Lutz, P., Banks, W.A. and Ercal, N. (2006) Potentiation of lead-induced cell death in pc12 cells by glutamate: Protection by n-acetylcysteine amide (NACA), a novel thiol antioxidant. Toxicology and Applied Pharmacology, 216, 197-205. doi:10.1016/j.taap.2006.05.002
[29] Wu, W., Abraham, L., Ogony, J., Matthews, R., Goldstein, G. and Ercal, N. (2008) Effects of n-acetylcysteine amide (NACA), a thiol antioxidant on radiation-induced cytotoxicity in chinese hamster ovary cells. Life Sciences, 82, 1122-1130. doi:10.1016/j.lfs.2008.03.016
[30] Price, T.O., Uras, F., Banks, W.A. and Ercal, N. (2006) A novel antioxidant n-acetylcysteine amide prevents gp120and tat-induced oxidative stress in brain endothelial cells. Experimental Neurology, 201, 193-202. doi:10.1016/j.expneurol.2006.03.030
[31] Wang, X.M., Terasaki, P.I., Rankin, G.W.J., Chia, D., Zhong, H.P. and Hardy, S. (1993) A new microcellular cytotoxicity test based on calcein am release. Human Immunology, 37, 264-270. doi:10.1016/0198-8859(93)90510-8
[32] Wang, H. and Joseph, J.A. (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine, 27, 612-616. doi:10.1016/S0891-5849(99)00107-0
[33] Winters, R.A., Zukowski, J., Ercal, N., Matthews, R.H. and Spitz, D.R. (1995) Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization by n-(1-pyrenyl) maleimide. Analytical Biochemistry, 227, 14-21. doi:10.1006/abio.1995.1246
[34] Draper, H.H., Squires, E.J., Mahmoodi, H., Wu, J., Agarwal, S. and Hadley, M. A. (1993) Comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radical Biology and Medicine, 15, 353-363. doi:10.1016/0891-5849(93)90035-S
[35] Aebi, H. (1984) Catalase in vitro. Methods in Enzymology, 105, 121-126. doi:10.1016/S0076-6879(84)05016-3
[36] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[37] Marmorstein, A.D., Finnemann, S.C., Bonilha, V.L. and Rodriguez-Boulan, E. (1998) Morphogenesis of the retinal pigment epithelium: Toward understanding retinal degenerative diseases. Annals of the New York Academy of Sciences, 857, 1-12. doi:10.1111/j.1749-6632.1998.tb10102.x
[38] Issels, R.D., Nagele, A., Eckert, K.G. and Wilmanns, W. (1988) Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and nacetylcysteine. Biochemical Pharmacology, 37, 881-888. doi:10.1016/0006-2952(88)90176-1
[39] Kopitz, J., Holz, F.G., Kaemmerer, E. and Schutt, F. (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie, 86, 825-831. doi:10.1016/j.biochi.2004.09.029
[40] Winkler, B.S., Boulton, M.E., Gottsch, J.D. and Sternberg, P. (1999) Oxidative damage and age-related macular degeneration. Molecular Vision, 5, 32-42.
[41] Comporti, M. (1987) Glutathione depleting agents and lipid peroxidation. Chemistry and Physics of Lipids, 45, 143-169. doi:10.1016/0009-3084(87)90064-8
[42] Masaki, N., Kyle, M.E. and Farber, J.L. (1989) Tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Archives of Biochemistry and Biophysics, 269, 390-399. doi:10.1016/0003-9861(89)90122-7
[43] Schütt, F., Volcker, H.E. and Dithmar, S. (2007) N-acetylcysteine improves lysosomal function and enhances the degradation of photoreceptor outer segments in cultured RPE cells. Klinische Monatsbl?tter für Augenheilkunde, 224, 580-584.
[44] D’Almeida, V., Camarini ,R., Azzalis, L.A., Mattei, R., Junqueira, V.B. and Carlini, E.A. (1995) Antioxidant defense in rat brain after chronic treatment with anorectic drugs. Toxicology Letters, 81,101-105. doi:10.1016/0378-4274(95)03408-0
[45] Jayanthi, S., Ladenheim, B. and Cadet, J.L. (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Annals of the New York Academy of Sciences, 844, 92-102. doi:10.1111/j.1749-6632.1998.tb08224.x
[46] Kim, H.C., Jhoo, W.K., Choi, D.Y., Im, D.H., Shin, E.J., Suh, J.H., Floyd, R.A. and Bing, G. (1999) Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Research, 851, 76-86. doi:10.1016/S0006-8993(99)02122-8
[47] Vessey, D.A., Lee, K.H. and Boyer, T.D. (1995) Differentiation-induced enhancement of the ability of cultured human keratinocytes to suppress oxidative stress. Journal of Investigative Dermatology, 104, 355-358. doi:10.1111/1523-1747.ep12665382
[48] Flora, G., Lee, Y.W., Nath, A., Maragos, W., Hennig, B. and Toborek, M. (2002) Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: Potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Medicine, 2, 71-85.
[49] Banerjee, A., Trueblood, M.B., Zhang, X., Manda, K.R., Lobo, P., Whitefield, P.D., Hagen, D.E. and Ercal, N. (2009) N-acetylcysteineamide (NACA) prevents inflamemation and oxidative stress in animals exposed to diesel engine exhaust. Toxicology Letters, 187, 187-193. doi:10.1016/j.toxlet.2009.02.022
[50] Tate, D.J.J., Miceli, M.V. and Newsome, D.A. (1995) Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science, 36, 1271-1279.
[51] Melo, P., Zanon-Moreno, V., Alves, C.J., Magalhaes, A., Tavares, M.A., Pinazo-Duran, M.D. and Moradas-Ferreira, P. (2010) Oxidative stress response in the adult rat retina and plasma after repeated administration of methamphetamine. Neurochemistry International, 56, 431-436. doi:10.1016/j.neuint.2009.11.017
[52] Ivancich, A., Jouve, H.M., Sartor, B. and Gaillard, J. (1997) EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: Formation of porphyrin and tyrosyl radical intermediates. Biochemistry, 36, 9356-9364. doi:10.1021/bi970886s
[53] Chouchane, S., Girotto, S., Yu, S. and Magliozzo, R.S. (2002) Identification and characterization of tyrosyl radical formation in Mycobacterium tuberculosis catalase-peroxidase (KatG). Journal of Biological Chemistry, 277, 42633-42638. doi:10.1074/jbc.M207916200
[54] Zhang, H., Xu, Y., Joseph, J. and Kalyanaraman, B. (2005) Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2: EPR SPIN trapping studies. Journal of Biological Chemistry, 280, 40684-40698. doi:10.1074/jbc.M504503200
[55] Geiger, R.C., Waters, C.M., Kamp, D.W. and Glucksberg, M.R. (2005) KGF prevents oxygen-mediated damage in ARPE-19 cells. Investigative Ophthalmology & Visual Science, 46, 3435-3442. doi:10.1167/iovs.04-1487
[56] Snodderly, D.M. (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. American Journal of Clinical Nutrition, 62, 1448S-1461S.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.