Optimal Configuration for Design of Stand-Alone PV System

DOI: 10.4236/sgre.2012.32020   PDF   HTML     9,746 Downloads   16,590 Views   Citations


This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293; while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.

Share and Cite:

K. Bataineh and D. Dalalah, "Optimal Configuration for Design of Stand-Alone PV System," Smart Grid and Renewable Energy, Vol. 3 No. 2, 2012, pp. 139-147. doi: 10.4236/sgre.2012.32020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Guglielmo, S. Stefano Redi, A. Tatnall and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE Transactions Energy Conversion, Vol. 24, No. 2, 2009, pp. 442-451. doi:10.1109/TEC.2009.2016026
[2] G. C. Bakos and M. Soursos, “Techno-Economic Assessment of a Stand-Alone PV/Hybrid Installation for LowCost Electrification of a Tourist Resort in Greece,” Applied Energy, Vol. 73, No. 2, 2002, pp. 183-193. doi:10.1016/S0306-2619(02)00062-4
[3] W. M. Rohouma, I. M. Molokhia and A. H. Esuri, “Comparative Study of Different PV Modules Configuration Reliability,” Desalination, Vol. 209, No. 1-3, 2007, pp. 122-128. doi:10.1016/j.desal.2007.04.020
[4] D. Lowe and C. R. Lloyd, “Renewable Energy Systems for Remote Areas in Australia,” Renew Energy, Vol. 22, No. 1-3, 2001, pp. 369-378. doi:10.1016/S0960-1481(00)00043-4
[5] Jordan Meteorological Department, “Jordan Annual Climate JMD,” Amman, Jordan, 1998.
[6] S. Silvestre, “Review of System Design and Sizing Tools. Practical Handbook of Photovoltaics: Fundamentals and Applications,” Elsevier, Oxford, 2003, 543 p.
[7] M. Egido and E. Lorenzo, “The Sizing of a Stand-Alone PV Systems: A Review and A Proposed New Method,” Solar Energy Materials and Solar Cells, Vol. 26, No. 1-2, 1992, pp. 51-69. doi:10.1016/0927-0248(92)90125-9
[8] R. Posadillo and R. Luque, “Approaches for Developing a Sizing Method for Stand-Alone PV Systems with Variable Demand,” Renewable Energy, Vol. 33, No. 5, 2008, pp. 1037-1048. doi:10.1016/j.renene.2007.06.004
[9] E. Ofry and A. Braunstein, “The Loss of Power Supply Probability as a Technique for Stand-Alone Solar Electrical (Photovoltaic) Systems,” IEEE Transactions on Power Apparatus and Systems, Vol. 102, No. 5, 1983, pp. 11711175. doi:10.1109/TPAS.1983.318057
[10] L. L. Bucciarelli Jr., “Estimating Loss-of-Power Probabilities of Stand-Alone Photovoltaic Solar Energy Systems,” Solar Energy, Vol. 32, No. 2, 1984, pp. 205-209. doi:10.1016/S0038-092X(84)80037-7
[11] L. Barra, S. Catalanotti, F. Fontana and F. Lavorante,” An Analytical Method to Determine the Optimal Size of a Photovoltaic Plant,” Solar Energy, Vol. 33, No. 6, 1984, pp. 509-514. doi:10.1016/0038-092X(84)90005-7
[12] B. Bartoli, V. Cuomo, F. Fontana, C. Serio and V. Silvestrini, “The Design of Photovoltaic Plants: An Optimization Procedure,” Applied Energy, Vol. 18, No. 1, 1984, pp. 37-47. doi:10.1016/0306-2619(84)90044-8
[13] M. Cardona and L. L. López, “A Simple Model for Sizing Stand-Alone Photovoltaic Systems,” Solar Energy Materials and Solar Cells, Vol. 55, No. 3, 1998, pp. 199-214. doi:10.1016/S0927-0248(98)00093-2
[14] Chapman, “Sizing Handbook for Stand-Alone Photovoltaic/Storage Systems,” Sandia National Laboratories, 1987.
[15] M. Sidrach-de-Cardona and L. L. Mora López, “A General Multivariate Qualitative Model for Sizing StandAlone Photovoltaic Systems,” Solar Energy Materials and Solar Cells, Vol. 59, No. 3, 1999, pp. 185-197. doi:10.1016/S0927-0248(99)00020-3
[16] I. Abouzahr and R. Ramkumar, “Loss of Power Supply Probability of Stand-Alone Photovoltaic Systems: A Closed Form Solution Approach,” IEEE Transactions on Energy Conversion, Vol. 6, No. 1, 1991, pp. 1-11. doi:10.1109/60.73783
[17] S. A. Klein and W. A. Beckman, “Loss-of-Load Probabilities for Stand-Alone Photovoltaic Systems,” Solar Energy, Vol. 39, No. 6, 1987, pp. 499-512. doi:10.1016/0038-092X(87)90057-0
[18] F. Hernández and M. Hernández-Campos, “The Development of the Renewable Energy Technologies in Spain,” Smart Grid and Renewable Energy, Vol. 2, No. 2, 2011, pp. 110-115. doi:10.4236/sgre.2011.22013
[19] R. Chenni, E. Matagne and M. Khennane, “Study of Solar Radiation in View of Photovoltaic Systems Optimization,” Smart Grid and Renewable Energy, Vol. 2, No. 4, 2011, pp. 367-374. doi:10.4236/sgre.2011.24042
[20] J. E. Hay, “Calculation of Monthly Mean Solar Radiation for Horizontal and Inclined Surface,” Solar Energy, Vol. 23, No. 4, 1979, pp. 301-308. doi:10.1016/0038-092X(79)90123-3
[21] T. M. I. Alamsyah, K. Sopian and A. Shahrir, “In Technoeconomics Analysis of a Photovoltaic System to Provide Electricity for a Household in Malaysia,” Proceedings of the International Symposium on Renewable Energy: Environment Protection & Energy Solution for Sustainable Development, Kuala Lumpur, 2003, pp. 387-396.
[22] M. Kolhe, “Techno-Economic Optimum Sizing of a StandAlone Solar Photovoltaic System,” IEEE Transactions on Energy Conversion, Vol. 24, No. 2, 2009, pp. 511-519. doi:10.1109/TEC.2008.2001455
[23] S. R. Wenham, M. A. Green and M. E. Watt, “Applied Photovoltaics,” Center for Photovoltaic Devices and Systems, Australia, 1994.
[24] Philadelphia. http://solar.com/default.aspx
[25] R. Messenger and J. Ventre, “Photovoltaic Systems Engineering, CRC,” Press LLC, Boca Raton, 2000.
[26] T. Wu, Q. Xiao, L. Wu, J. Zhang and M. Wang, “Study and Implementation on Batteries Charging Method of MicroGrid Photovoltaic Systems,” Smart Grid and Renewable Energy, Vol. 2, No. 4, 2011, pp.324-329.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.