Scientific Research

An Academic Publisher

A New Approach to Time-Dependent Solutions to the Non-Linear Fokker-Planck Equations Related to Arbitrary Functions of Tsallis Entropy: A Mathematical Study and Investigation

The following article has been retracted due to the investigation of complaints received against it.
Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the authors’ name: Alireza Heidari and Seyedali Vedad.
The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.5 420-429, 2012, has been removed from this site.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Heidari, S. Vedad and M. Ghorbani, "A New Approach to Time-Dependent Solutions to the Non-Linear Fokker-Planck Equations Related to Arbitrary Functions of Tsallis Entropy: A Mathematical Study and Investigation,"

*Journal of Modern Physics*, Vol. 3 No. 5, 2012, pp. 420-429. doi: 10.4236/jmp.2012.35058.

[1] | C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics,” Journal of Statistical Physics, Vol. 52, No. 1-2, 1988, pp. 479-487. doi:10.1007/BF01016429 |

[2] | P. H. Chavanis, “Generalized Thermodynamics and Fokker-Planck Equations: Applications to Stellar Dynamics and Two-Dimensional Turbulence,” Physical Review E, Vol. 68, No. 3, 2003, pp. 036108-036127. doi:10.1103/PhysRevE.68.036108 |

[3] | P. H. Chavanis, “Nonlinear Mean Field Fokker-Planck Equations. Application to the Chemotaxis of Biological Populations,” The European Physical Journal B—Condensed Matter and Complex Systems, Vol. 62, 2008, pp. 179-208. |

[4] | P. H. Chavanis, “Generalized Fokker-Planck Equations and Effective Thermodynamics,” Physica A: Statistical Mechanics and Its Applications, Vol. 340, 2004, pp. 57- 65. |

[5] | P. H. Chavanis and M. Lemou, “Relaxation of the Distribution Function Tails for Systems Described by Fokker-Planck Equations,” Physical Review E, Vol. 72, No. 6, 2005, pp. 061106-061121. doi:10.1103/PhysRevE.72.061106 |

[6] | P. H. Chavanis, “Nonlinear Mean-Field Fokker-Planck Equations and Their Applications in Physics, Astrophysics and Biology,” Comptes Rendus Physique, Vol. 7, No. 3, 2006, pp. 318-330. doi:10.1016/j.crhy.2006.01.004 |

[7] | V. Schw?mmle, E. M.F. Curado and F. D. Nobre, “A General Nonlinear Fokker-Planck Equation and Its Associated Entropy,” The European Physical Journal B— Condensed Matter and Complex Systems, Vol. 58, 2007, pp. 159-165. |

[8] | V. Schw?mmle, F. D. Nobre and E. M. F. Curado, “Consequences of the H Theorem from Nonlinear Fokker- Planck Equations,” Physical Review E, Vol. 76, No. 4, 2007, pp. 041123-041130. doi:10.1103/PhysRevE.76.041123 |

[9] | V. Schw?mmle, E. M. F. Curado and F. D. Nobre, “Dynamics of Normal and Anomalous Diffusion in Nonlinear Fokker-Planck Equations,” The European Physical Jour- nal B—Condensed Matter and Complex Systems, Vol. 70, 2009, pp. 107-116. |

[10] | V. Schw?mmle, E. M.F. Curado and F. D. Nobre, “Non- linear Fokker-Planck Equations Related to Standard Ther- mostatistics,” Complexity, Metastability and Nonextensivity, Vol. 84, 2007, pp. 152-156. |

[11] | M. S. Ribeiro, F. D. Nobre and E. M. F. Curado, “Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis Entropy,” Entropy, Vol. 13, No. 11, 2011, pp. 1928-1944. doi:10.3390/e13111928 |

[12] | A. M. Scarfone and T. Wada, “Lie Symmetries and Related Group-Invariant Solutions of a Nonlinear Fokker- Planck Equation Based on the Sharma-Taneja-Mittal Entropy,” Brazilian Journal of Physics, Vol. 30, No. 2A, 2009. doi:10.1590/S0103-97332009000400024 |

[13] | T. D. Frank, A. Daffertshofer, C. E. Peper, P. J. Beek and H. Haken, “Towards a Comprehensive Theory of Brain Activity: Coupled Oscillator Systems under External Forces,” Physica D: Nonlinear Phenomena, Vol. 144, No. 1-2, 2000, pp. 62-86. doi:10.1016/S0167-2789(00)00071-3 |

[14] | T. D. Frank, A. Daffertshofer and P. J. Beek, “Multivariate Ornstein-Uhlenbeck Processes with Mean-Field Dependent Coefficients: Application to Postural Sway,” Physical Review E, Vol. 63, No. 1, 2000, pp. 011905- 011920. doi:10.1103/PhysRevE.63.011905 |

[15] | T. D. Frank and A. Daffertshofer, “Exact Time-Depen- dent Solutions of the Renyi Fokker-Planck Equation and the Fokker-Planck Equations Related to the Entropies Proposed by Sharma and Mittal,” Physica A: Statistical Mechanics and Its Applications, Vol. 285, 2000, pp. 351-366. |

[16] | T. D. Frank, “On Nonlinear and Nonextensive Diffusion and the Second Law of Thermodynamics,” Physics Letters A, Vol. 267, No. 5-6, 2000, pp. 298-304. doi:10.1016/S0375-9601(00)00127-4 |

[17] | A. Daffertshofer, C. E. Peper, T. D. Frank and P. J. Beek, “Spatio-Temporal Patterns of Encephalographic Signals during Polyrhythmic Tapping,” Human Movement Science, Vol. 19, No. 4, 2000, pp. 475-498. doi:10.1016/S0167-9457(00)00032-4 |

[18] | A.R. Plastino and A. Plastino, “Non-Extensive Statistical Mechanics and Generalized Fokker-Planck Equation,” Physica A: Statistical Mechanics and Its Applications, Vol. 222, 1995, pp. 347-354. |

[19] | A.R. Plastino, A. Plastino and H. Vucetich, “A Quantitative Test of Gibbs’ Statistical Mechanics,” Physics Letters A, Vol. 207, No. 1-2, 1995, pp. 42-46. doi:10.1016/0375-9601(95)00640-O |

[20] | F. Pennini, A. Plastino and A.R. Plastino, “Tsallis Entropy and Quantal Distribution Functions,” Physics Letters A, Vol. 208, No. 4-6, 1995, pp. 309-314. doi:10.1016/0375-9601(95)00720-1 |

[21] | A. R. Plastino and A. Plastino, “Fisher Information and Bounds to the Entropy Increase,” Physical Review E, Vol. 52, No. 4, 1995, pp. 4580-4582. doi:10.1103/PhysRevE.52.4580 |

[22] | M. Portesi, A. Plastino and C. Tsallis, “Nonextensive Thermostatistics Can Yield Apparent Magnetism,” Physical Review E, Vol. 52, 1995, pp. R.3317-R.3320. |

[23] | T. D. Frank, “Stochastic Feedback, Nonlinear Families of Markov Processes, and Nonlinear Fokker-Planck Equations,” Physica A: Statistical Mechanics and Its Applications, Vol. 331, 2004, pp. 391-408. |

[24] | T. D. Frank, “Analytical Results for Fundamental Time- Delayed Feedback Systems Subjected to Multiplicative Noise,” Physical Review E, Vol. 69, No. 6, 2004, pp. 061104-061114. doi:10.1103/PhysRevE.69.061104 |

[25] | T. D. Frank, “Fluctuation-Dissipation Theorems for Non- linear Fokker-Planck Equations of the Desai-Zwanzig Type and Vlasov-Fokker-Planck Equations,” Physics Letters A, Vol. 329, No. 6, 2004, pp. 475-485. doi:10.1016/j.physleta.2004.07.019 |

[26] | T. D. Frank, “Classical Langevin Equations for the Free Electron Gas and Blackbody Radiation,” Journal of Physics A: Mathematical and General, Vol. 37, No. 11, 2004, p. 3561. doi:10.1088/0305-4470/37/11/001 |

[27] | T. D. Frank, P. J. Beek and R. Friedrich, “Identifying Noise Sources of Time-Delayed Feedback Systems,” Physics Letters A, Vol. 328, No. 2-3, 2004, pp. 219-224. doi:10.1016/j.physleta.2004.06.012 |

[28] | T. D. Frank, “Stability Analysis of Stationary States of Mean Field Models Described by Fokker-Planck Equations,” Physica D: Nonlinear Phenomena, Vol. 189, No. 3-4, 2004, pp. 199-218. doi:10.1016/j.physd.2003.08.010 |

[29] | T. D. Frank, “Complete Description of a Generalized Ornstein-Uhlenbeck Process Related to the Nonextensive Gaussian Entropy,” Physica A: Statistical Mechanics and its Applications, Vol. 340, 2004, pp. 251-256. |

[30] | T. D. Frank, “Dynamic Mean Field Models: H-Theorem for Stochastic Processes and Basins of Attraction of Stationary Processes,” Physica D: Nonlinear Phenomena, Vol. 195, No. 3-4, 2004, pp. 229-243. doi:10.1016/j.physd.2004.03.014 |

[31] | T. D. Frank, “Nonlinear Fokker-Plank Equations,” Springer, Amsterdam, 2004. |

[32] | A. M. Mathai and H. J. Haubold, “On Generalized Entropy Measures and Pathways,” Physica A: Statistical Mechanics and Its Applications, Vol. 385, 2007, pp. 493- 500. |

[33] | T. D. Frank and A. R. Plastino, “Generalized Thermostatistics Based on the Sharma-Mittal Entropy and Escort Mean Values,” The European Physical Journal B— Condensed Matter and Complex Systems, Vol. 30, 2002, pp. 543-549. |

[34] | T. D. Frank, “Generalized Fokker-Planck Equations Derived from Generalized Linear Nonequilibrium Thermo- dynamics,” Physica A: Statistical Mechanics and Its Applications, Vol. 310, 2002, pp. 397-412. |

[35] | T. D. Frank, “On a General Link between Anomalous Diffusion and Nonextensivity,” Journal of Mathematical Physics, Vol. 43, No. 1, 2002, pp. 344-350. doi:10.1063/1.1421062 |

[36] | T. D. Frank, “Generalized Multivariate Fokker-Planck Equations Derived from Kinetic Transport Theory and Linear Nonequilibrium Thermodynamics,” Physics Letters A, Vol. 305, No. 3-4, 2002, pp. 150-159. doi:10.1016/S0375-9601(02)01446-9 |

[37] | T. D. Frank, “Interpretation of Lagrange Multipliers of Generalized Maximum-Entropy Distributions,” Physics Letters A, Vol. 299, 2002, pp. 153-158. doi:10.1016/S0375-9601(02)00631-X |

[38] | T. D. Frank, A. Daffertshofer and P. J. Beek, “Impacts of Statistical Feedback on the Flexibility-Accuracy Trade- Offin Biological Systems,” Journal of Biological Physics, Vol. 28, No. 2-3, 2002, pp. 39-54. doi:10.1023/A:1016256613673 |

Copyright © 2019 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.