Enrichment of Phosphate on Ferrous Iron Phases during Bio-Reduction of Ferrihydrite

DOI: 10.4236/ijg.2012.32033   PDF   HTML     4,440 Downloads   7,031 Views   Citations


The reduction of less stable ferric hydroxides and formation of ferrous phases is critical for the fate of phosphorus in anaerobic soils and sediments. The interaction between ferrous iron and phosphate was investigated experimentally during the reduction of synthetic ferrihydrite with natural organic materials as carbon source. Ferrihydrite was readily reduced by dissimilatory iron reducing bacteria (DIRB) with between 52% and 73% Fe(III) converted to Fe(II) after 31 days, higher than without DIRB. Formation of ferrous phases was linearly coupled to almost complete removal of both aqueous and exchangeable phosphate. Simple model calculations based on the incubation data suggested ferrous phases bound phosphate with a molar ratio of Fe(II):P between 1.14 - 2.25 or a capacity of 246 - 485 mg·P·g-1 Fe(II). XRD analysis indicated that the ratio of Fe(II): P was responsible for the precipitation of vivianite (Fe3(PO4)2·8H2O), a dominant Fe(II) phosphate mineral in incubation systems. When the ratio of Fe(II):P was more than 1.5, the precipitation of Fe(II) phosphate was soundly crystallized to vivianite. Thus, reduction of ferric iron provides a mechanism for the further removal of available phosphate via the production of ferrous phases, with anaerobic soils and sediments potentially exhibiting a higher capacity to bind phosphate than some aerobic systems.

Share and Cite:

Q. Li, X. Wang, D. Kan, R. Bartlett, G. Pinay, Y. Ding and W. Ma, "Enrichment of Phosphate on Ferrous Iron Phases during Bio-Reduction of Ferrihydrite," International Journal of Geosciences, Vol. 3 No. 2, 2012, pp. 314-320. doi: 10.4236/ijg.2012.32033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Gruber and J. N. Galloway, “An Earth-System Perspective of the Global Nitrogen Cycle,” Nature, Vol. 45, No. 451, 2008, pp. 293-296. doi:10.1038/nature06592
[2] W. H. Patrick Jr., S. Gotoh and B. G. Williams, “Strengite Dissolution in Flooded Soils and Sediments,” Science, Vol. 179, No. 4073, 1973, pp. 564-565. doi:10.1126/science.179.4073.564
[3] F. N. Ponnamperuma, “The Chemistry of Submerged Soils,” Advanced in Agronology, Vol. 24, 1972, pp. 29-96. doi:10.1016/S0065-2113(08)60633-1
[4] W. H. Patrick Jr. and R. A. Khalid, “Phosphate Release and Sorption by Soils and Sediments: Effect of Aerobic and Anaerobic Conditions,” Science, Vol. 186, No. 4158, 1974, pp. 53-55. doi:10.1126/science.186.4158.53
[5] G. J. D. Kirk, “The Biogeochemistry of Submerged Soils,” John Wiley & Sons, London, 2004. doi:10.1002/047086303X
[6] A. J. Miller, E. A. G. Schuur and O. A. Chadwick, “Redox Control of Phosphorus Pools in Hawaiian Montane Forest Soils,” Geoderma, Vol. 102, No. 3-4, 2001, pp. 219-237. doi:10.1016/S0016-7061(01)00016-7
[7] N. Chacon, W. L. Silver, E. A. Dubinsky and D. F. Cusack, “Iron Reduction and Soil Phosphorus Solubilization in Humid Tropical Forests Soils: The Roles of Labile Carbon Pools and an Electron Shuttle Compound,” Biogeochemistry, Vol. 78, No. 1, 2006, pp. 67-84. doi:10.1007/s10533-005-2343-3
[8] R. A. Royer, W. D. Burgos, A. S. Fisher, B. H. Jeon, R. F. Unz and B. A. Dempsey, “Enhancement of Hematite Bioreduction by Natural Organic Matter,” Environmental Science & Technology, Vol. 36, No. 13, 2002, pp. 2897-2904. doi:10.1021/es015735y
[9] T. S. Peretyazhko, J. M. Zachara, D. W. Kennedy, J. K. Fredrickson, B. W. Arey, J. P. McKinley, C. M. Wang, A. C. Dohnalkova and Y. Xia, “Ferrous Phosphate Surface Precipitates Resulting from the Reduction of Intragrain 6-Line Ferrihydrite by Shewanella Oneidensis MR-1,” Geochimica et Cosmochimica Acta, Vol. 74, No. 13, 2010, pp. 3751-3767. doi:10.1016/j.gca.2010.04.008
[10] D. R. Lovley, E. J. P. Phillips and D. J. Lonergan, “Enzymatic versus Nonenzymatic Mechanisms for Fe( III) Reduction in Aquatic Sediments,” Environmental Science & Technology, Vol. 25, No. 6, 1991, pp. 1062-1067. doi:10.1021/es00018a007
[11] R. A. Royer, W. D. Burgos, A. S. Fisher, R. F. Unz and B. A. Dempsey, “Enhancement of Biological Reduction of Hematite by Electron Shuttling and Fe(II) Complexation,” Environmental Science & Technology, Vol. 36, No. 9, 2002, pp. 1939-1946. doi:10.1021/es011139s
[12] R. A. Doong and B. Schink, “Cysteine-Mediated Reductive Dissolution of Poorly Crystalline Iron(III) Oxides by Geobacter Sulfurreducens,” Environmental Science & Technology, Vol. 36, No. 13, 2002, pp. 2939-2945. doi:10.1021/es0102235
[13] J. .K Fredrickson, S. Kota, R. K. Kukkadapu, C. Liu and J. M. Zachara, “Influence of Electron Donor/Acceptor Concentrations on Hydrous Ferric Oxide (HFO) Bioreduction,” Biodegradation, Vol. 14, No. 2, 2003, pp. 91-103. doi:10.1023/A:1024001207574
[14] R. A. Royer, B. A. Dempsey, B. H. Jeon and W. D. Burgos, “Inhibition of Biological Reductive Dissolution of Hematite by Ferrous Iron,” Environmental Science & Technology, Vol. 38, No. 1, 2004, pp. 187-193. doi:10.1021/es026466u
[15] E. J. O’Loughlin, “Effects of Electron Transfer Mediators on the Bioreduction of Lepidocrocite (Gamma-FeOOH) by Shewanella Putrefaciens CN32,” Environmental Science & Technology, Vol. 42, No. 18, 2008, pp. 6876-6882. doi:10.1021/es800686d
[16] S. Rakshit, M. Uchimiya and G. Sposito, “Iron(III) Bioreduction in Soil in the Presence of Added Humic Substances,” Soil Science Society of America Journal, Vol. 73, No. 1, 2009, pp. 65-71. doi:10.2136/sssaj2007.0418
[17] P. P. Hearn and D. L. E. C. Parkhurst, “Authigenic Vivianite in Potomac River Sediments: Control by Ferric Oxyhydroxides,” Journal of Sediment Research, Vol. 53, No. 1, 1983, pp. 165-177.
[18] R. L. Frost, W. Martens, P. A. Williams and J. T. Kloprogge, “Raman and Infrared Spectroscopic Study of the Vivianite-Group Phosphates Vivianite, Baricite and Bobierrite,” Mineralogical Magazine, Vol. 66, No. 6, 2002, pp. 1063-1073. doi:10.1180/0026461026660077
[19] R. K. Kukkadapu, J. M. Zachara, J. K. Fredrickson and D. W. Kennedy, “Biotransformation of Two-Line Silica-Ferrihydrite by a Dissimilatory Fe(III)-Reducing Bacterium: Formation of Carbonate Green Rust in the Presence of Phosphate,” Geochimica Cosmochimica Acta, Vol. 68, No. 13, 2004, pp. 2799-2814. doi:10.1016/j.gca.2003.12.024
[20] N. Parmar, Y. A. Gorby, T. J. Beveridge and F. G. Ferris, “Formation of Green Rust and Immobilization of Nickel in Response to Bacterial Reduction of Hydrous Ferric Oxide,” Geomicrobiology of Journal, Vol. 18, No. 4, 2001, pp. 375-385. doi:10.1080/014904501753210549
[21] U. Schwertmann, D. G. Schulze and E. Murad, “Identification of Ferrihydrite in Soils by Dissolution Kinetics, Differential X-Ray Diffraction and M?ssbauer Spectroscopy,” Soil Science Society of America Journal, Vol. 46, No. 4, 1982, pp. 869-875. doi:10.2136/sssaj1982.03615995004600040040x
[22] J. .L Jambor and J. E. Dutrizac, “Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide,” Chemical Reviews, Vol. 98, No. 7, 1998, pp. 2549-2585. doi:10.1021/cr970105t
[23] J. C. Ryden, J. R. McLaughlin and J. K. Syers, “Mechanisms of Phosphate Sorption by Soils and Hydrous Ferric Oxide Gels,” Journal of Soil Science, Vol. 28, No. 1, 1977, pp. 72-92. doi:10.1111/j.1365-2389.1977.tb02297.x
[24] S. Kuo and E. G. Lotse, “Kinetics of Phosphate Adsorption and Desorption by Hematite and Gibbsite,” Soil Science, Vol. 116, No. 6, 1973, pp. 400-406. doi:10.1097/00010694-197312000-00002
[25] R. L. Parfitt and R. J. Atkinson, “Phosphate Adsorption on Goethite (α-FeOOH),” Nature, Vol. 264, No. 5588, 1976, pp. 740-742. doi:10.1038/264740a0
[26] J. Torrent, V. Barrón and U. Schwertmann, “Phosphate Adsorption and Desorption by Goethites Differing in Crystal Morphology,” Soil Science Society of America Journal, Vol. 549, No. 4, 1990, pp. 1007-1012. doi:10.2136/sssaj1990.03615995005400040012x
[27] L. Madrid and P. D. Arambarri, “Adsorption of Phosphate by Two Iron Oxides in Relation to Their Porosity,” Journal of Soil Science, Vol. 36, No. 4, 1985, pp. 523-530. doi:10.1111/j.1365-2389.1985.tb00355.x
[28] W. R. Fischer, “Standard Potentials (E0) of Iron(III) Oxides under Reducing Conditions,” Zeitschrift fuer Pflanzenernaehrung und Bodenkunde, Vol. 150, No. 5, 2007, pp. 286-289. doi:10.1002/jpln.19871500504
[29] R. J. Atkinson, A. M. Posner and J. P. Quirk, “Crystal Nucleation in Fe(III) Solutions and Hydroxide Gels,” Journal of Inorganic and Nuclear Chemistry, Vol. 30, No. 9, 1968, pp. 2371-238. doi:10.1016/0022-1902(68)80247-7
[30] D. R. Lovley and E. J. P. Phillips, “Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese,” Applied and Environment Microbiology, Vol. 54, No. 6, 1988, pp. 1472-1480.
[31] W. Zhang, Q. M. Li, X. X. Wang, Y. Ding and J. Sun, “Reducing Organic Substances from Anaerobic Decomposition of Hydrophytes,” Biogeochemistry, Vol. 94, No. 1, 2009, pp. 1-11. doi:10.1007/s10533-009-9295-y

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.