SnO2 Dense Ceramic Microwave Sintered with Low Resistivity


The Hall-Héroult process is used for alumina reduction by the use of graphite anodes even though it involves a high emission of carbon dioxide (CO2) and several other organic compounds. Proposals have been made aiming at substituting graphite for a single-phase SnO2-based ceramic with low resistivity and chemical resistance to cryolite, which is characterized as an inconsumable anode, reducing pollutant emissions. To this end, a wide range of studies were carried out on SnO2-based ceramics modified with ZnO as a densification aid doped with the promoters of electrical conductivity such as Nb2O5, Al2O3 and Sb2O3 through a mixture of oxides and hybrid sintering in a microwave oven. The pressed pellets were sintered in a microwave oven up to 1050℃ under a constant heating rate of 10℃/min. After sintering, the density was determined by the Archimedes method, the phases were then characterized by X-ray diffraction, the microstructure and chemical composition resulting from the sintered SnO2-based ceramics were also investigated by field emission scanning electron microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (EDS) and the electrical properties were determined by the measurements of the electric field x current density. A single-phase ceramic was obtained with a relative density of above 90% and electrical resistivity of 6.1 Ω·cm at room temperature. The ceramics obtained in this study could be a potential candidate as an inconsumable anode to replace the current fused coke used in the reduction of alumina.

Share and Cite:

L. Antonio Perazolli, G. Gasparotto, N. Jaomaci, M. Ruiz, M. Aparecida Zaghete Bertochi, C. Renato Foschini, E. Carlos Aguiar and J. Arara Varela, "SnO2 Dense Ceramic Microwave Sintered with Low Resistivity," Materials Sciences and Applications, Vol. 3 No. 5, 2012, pp. 272-280. doi: 10.4236/msa.2012.35040.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. M. Clark and D. R. Secrist, “Method of Manufacturing Aluminum in a Hall-Heroult Cell,” US Patent No. 4379033, 1981.
[2] H. Alder, “Process for the Electrolysis of a Molten Charge Using Inconsumable Bipolar Electrodes,” US Patent No. 3930967, 1976.
[3] H. Alder, “Electrolysis of a Molten Charge Using Incomsumable Electrodes,” US Patent No. 3960678, 1976.
[4] D. E. Hansey and L. I. Grindstaff, “Electrode Composition,” US Patent No. 4233148, 1980.
[5] O. Citti, C. McGarry and Y. Boussant-Roux, “Tin Oxide-Based Electrodes Having Improved Corrosion Resistance,” US Patent No. 018662, 2005.
[6] Z. M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials II: Electrical Properties,” Journal of the Electrochemical Society, Vol. 123, No. 9, 1976, pp. 299C-310C. doi:10.1149/1.2133090
[7] J. A. Varela, L. Perazolli, E. R. Cerri, E. Leite and E. Longo, “Sintering of Tin Oxide and Its Applications in Electronics and Processing of High Purity Optical Glasses, Ceram, Vol. 47, No. 302, 2001, pp. 117-123. doi:10.1590/S0366-69132001000200010
[8] J. A. Cerri, E. R. Leite, D. Gouvea, E. Longo and J. A. Varela, “Effect of Cobalt (II) Oxide and Manganese (IV) Oxide on Sintering of Tin (IV) Oxide,” Journal of the American Ceramic Society, Vol. 79, No. 3, 1996, pp. 799-804. doi:10.1111/j.1151-2916.1996.tb07949.x
[9] S. A. Pianaro, P. R. Bueno, P. Olivi, E. Longo and J. A. Varela, “Electrical Properties of the SnO2-Based Varistor,” Journal of Materials Science: Materials in Electronics, Vol. 9, No. 2, 1998, pp. 159-165. doi:10.1023/A:1008821808693
[10] M. M. Oliveira; P. R. Bueno, J. A. Varela and E. Longo, “Influence of La2O3, Pr2O3 and CeO2 on the Nonlinear Properties of SnO2 Multicomponent Varistors,” Materials Chemistry and Physics, Vol. 74, No. 2, 2002, pp. 150-153. doi:10.1016/S0254-0584(01)00458-8
[11] M. M. Oliveira, J. H. G. Rangel, V. C. Souza, E. Longo and R. N. R. Filho, “Review—Effect of Donor Metals on the Electrical and Microstructural Properties of SnO2Based Ceramic Varistors,” Ceramica, Vol. 54, No. 331, 2008, pp. 296-302. doi:10.1590/S0366-69132008000300005
[12] A. Ovenston, D. Spinceana, J. R. Walls and M. Caldararu, “Effect of Frequency on the Electrical Characteristics of Tin-Antimony Oxide Mixtures,” Journal of Materials Science, Vol. 29, No. 19, 1994, pp. 4946-4952. doi:10.1007/BF01151083
[13] K. C. Mishra, K. H. Johnson and P. C. Schmidt, “Electronic Struture of Antimony-Doped Tin Oxide,” Physical Review B, Vol. 51, No. 20, 1995, pp. 13972-13976. doi:10.1103/PhysRevB.51.13972
[14] F. M. Filho, A. Z. Simoes, A. Ries, E. C. Souza, L. Perazolli, M. Cilense, E. Longo and J. A. Varela, “Investigation of Electrical Properties of Tantalum Doped SnO2 Varistor System,” Ceramics International, Vol. 31, No. 3, 2005, pp. 399-404. doi:10.1016/j.ceramint.2004.06.004
[15] A. V. Kovalevsky, F. M. B. Marques, V. V. Kharton, F. Maxim and J. R. Frade, “Silica-Scavenging Effect in Zirconia Electrolytes: Assessment of Lanthanum Silicate Formation,” Ionics, Vol. 12, No. 3, 2006, pp. 179-184. doi:10.1007/s11581-006-0031-5
[16] D. Ivanova, A. Kovalevsky, V. V. Kharton and F. M. B. Marques, “Silica-Scavenging Effects in Ceria-Based Solid Electrolytes,” Boletines Sociedad de Cerámica y Vidrio, Vol. 47, No. 4, 2008, pp. 201-206.
[17] M. A. N. Bordignon, C. R. Foschini, G. Gasparotto, E. C. Aguiar, M. A. Zaghete and L. Perazolli, “SnO2 Ceramic with Low Electrical Resistivity Obtained by Microwave Sintering,” Journal of Advanced Microscopy Research, Vol. 6, No. 3, 2011, pp. 193-200.
[18] A. C. R. N. Barbosa, C. V. M. S. Cruz, M. B. Graziani, M. C. F. Lorenzetti and E. Sabadini, “Heating in Microwave Ovens/Developing of Basic Concepts,” Química Nova, Vol. 24, No. 6, 2001, pp. 901-904.
[19] R. R. Menezes, P. M. Souto and R. H. G. A. Kiminami, “Microwave Sintering of Ceramics. Part I: Fundamental Aspects,” Ceramica, Vol. 53, No. 325, 2007, pp. 1-10. doi:10.1590/S0366-69132007000100002
[20] W. W. Ho, “High-Temperature Dielectric Properties of Polycrystalline Ceramics,” In: W. H. Sutton, M. H. Brooks and I. J. Chabinsky, Eds., Microwave Processing of Materials, Materials Research Society, Pittsburgh, 1988, pp. 137-148.
[21] C. R. Foschini, L. Perazolli and J. A. Varela, “Sintering of Tin Oxide Using Zinc Oxide as a Densification Aid,” Journal of Materials Science, Vol. 39, No. 18, 2004, pp. 5825-5830.
[22] W. D. Callister Jr., “Fundamentals of Materials Science and Engineering,” 5th Edidion, John Wiley & Sons Inc., New York, 2001.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.