Zero-Order Release Profiles from A Multistimuli Responsive Electro-Conductive Hydrogel

DOI: 10.4236/jbnb.2012.322032   PDF   HTML   XML   4,579 Downloads   7,302 Views   Citations


Electroconductive hydrogels has been extensively studied in drug delivery systems because they combine the properties of hydogels with the conducting polymers in only one material. In this work, pyrrole was polymerized electrochemically into poly(acrylic acid) hydrogel. This material kept the swelling properties that are characteristic of hydrogels and the electroactivity of the conducting polymers. The hydrogel (with and without the conducting polymer) swelling degree depends on both the ionic strength and pH. As this material is responsive to changes in the electrical potential, pH and ionic strength, the safranin release presented different delivery profiles, in accordance to variations and combinations of these stimuli. The most interesting result was the achievement of the linear safranin release indicating a zero-order kinetics.

Share and Cite:

S. H. Takahashi, L. M. Lira and S. I. Córdoba de Torresi, "Zero-Order Release Profiles from A Multistimuli Responsive Electro-Conductive Hydrogel," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2A, 2012, pp. 262-268. doi: 10.4236/jbnb.2012.322032.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Asplund, T. Nyberg and O. Inganas, “Electroactive Polymers for Neutral Interfaces,” Polymer Chemistry, Vol. 1, No. 9, 2010, pp. 1374-1391. doi:10.1039/c0py00077a
[2] T. Skotheim and J. R. Reynolds, “Handbook of Conducting Polymers: Conjugated Polymers Processing and Applications 3rd Edition,” Taylor and Francis, New York, 2007.
[3] S. H. Gehrke and P. I. Lee, “Hydrogels for Drug Delivery Systems,” In: P. Tyle, Ed., Specialized Drug Delivery Systems, Marcel Dekker, New York, 1990, pp. 333-392.
[4] P. Gupta, K. Vermani and S. Garg, “Hydrogels: From Controlled Release to pH Responsive Drug Delivery,” Drug Discovery Today, Vol. 7, No. 10, 2002, pp. 569-579. doi:10.1016/S1359-6446(02)02255-9
[5] C. C. Lin and A. T. Metters, “Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling,” Advanced Drug Delivery Reviews, Vol. 58, No. 12-13, 2006, pp. 1379-1408. doi:10.1016/j.addr.2006.09.004
[6] S. A. Jaffari and A. P. F. Turner, “Recent Advances in Amperometric Glucose Biosensors for in Vivo Monitoring,” Physiological Measurement, Vol. 16, No. 1, 1995, pp. 1-15. doi:10.1088/0967-3334/16/1/001
[7] N. Wisniewski, F. Moussy and W. M. Reichert, “Characterization of Implantable Biosensors Membrane Biofuling,” Fresenius’ Journal of Analytical Chemistry, Vol. 366, 2000, pp. 611-621.
[8] O. M. Schuvailo, O. O. Soldatkin, A. Lefebvre, R. Cespuglio and A. P. Soldatkin, “Highly Selective Microbiosensors for in Vivo Measurement of Glucose, Lactate and Glutamate,” Analytical Chimica Acta, Vol. 573-574, 2006, pp. 110-116. doi:10.1016/j.aca.2006.03.034
[9] A. Ramanavicius, K. Habermuller, E. Csoregi, V. Laurinavicius and W. Schumann, “Polypyrrole Entrapped Quinohemoprotein Alcohol Dehydrogenase. Evidence for Direct Electron Transfer via Conducting Polymer Chains,” Analytical Chemistry, Vol. 71, No. 16, 1999, pp. 3581-3586. doi:10.1021/ac981201c
[10] B. Zinger and L. L. Miller, “Timed Release of Chemicals from Polypyrrole Films,” Journal of the American Chemical Society, Vol. 106, No. 22, 1984, pp. 6861-6863. doi:10.1021/ja00334a076
[11] A. N. K. Lau and L. L. Miller, “Electrochemical Behavior of a Dopamine Polymer. Dopamine Release as a Primitive Analog of a Synapse,” Journal of the American Chemical Society, Vol. 105, No. 16, 1983, pp. 5271-5277. doi:10.1021/ja00354a016
[12] J. M. Pernaut and J. R. Reynolds, “Use of Conducting Electroactive Polymers for Drug Delivery and Sensing of Bioactive Molecules. A Redox Chemistry Approach,” The Journal of Physical Chemistry B, Vol. 104, No. 17, 2000, pp. 4080-4090. doi:10.1021/jp994274o
[13] X. Cui, V. A. Lee, Y. Ra-phael, J. A. Wiler, J. F. Hetke, D. J. Anderson and D. C. Martin, “Surface Modification of Neutral Recording Electrodes with Conducting Polymer/ Biomolecule Blends,” Journal of Biomedical Materials Research, Vol. 56, No. 2, 2001, pp. 261-272. doi:10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I
[14] P. M. George, A. W. Lyckman, D. A. LaVan, A. Hegde, Y. Leung, R. Avasare, C. Testa, P. M. Alexander, R. Langer and M. Sur, “Fabrication and Biocompatibility of Polypyrrole Implants Suitable for Neural Prosthetics,” Biomaterials, Vol. 26, No. 17, 2005, pp. 3511-319.
[15] X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler and D. C. Martin, “In Vivo Studies of Polypyrrole/Peptide Coated Neural Probes,” Biomaterials, Vol. 24, No. 5, 2003, pp. 777-787. doi:10.1016/S0142-9612(02)00415-5
[16] J. Y. Wong, R. Langer and D. E. Ingber, “Electrically Conducting Poly-mers Can Noninvasively Control the Shape and Growth of Mammalian Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 91, No. 8, 1994, pp. 3201-3204. doi:10.1073/pnas.91.8.3201
[17] S. Murdan, “Elec-tro-Responsive Drug Delivery from Hydrogels,” Journal of Controlled Release, Vol. 91, 1994, pp. 3201-3204.
[18] A. Guiseppi-Elie, N. F. Sheppard Jr., “Conferrig Biospecificity to Electroconductive Polymer-Based Biosensors Devices,” ACS Northeast Regional Meeting (NERM), Rochester, October 1995, pp. 22-25.
[19] C. J. Small, C. O. Too and G. G. Wallace, “Responsive Conducting Polymer-Hydrogel Composites,” Polymer Gels and Network, Vol. 5, No. 3, 1997, pp. 251-265. doi:10.1016/S0966-7822(96)00044-5
[20] R. A. Green and S. Baek, L. A. Poole-Warren and P. J. Martens, “Conducting Polymer-Hydrogels for Medical Electrode Applications,” Science and Technology of Advanced Materials, Vol. 11, No. 1, 2010, pp. 1-13. doi:10.1088/1468-6996/11/1/014107
[21] A. Guisep-pi-Elie, “Electroconductive Hydrogels: Synthesis, Characterization and Biomedical Applications,” Biomaterials, Vol. 31, No. 10, 2010, pp. 2701-2716. doi:10.1016/j.biomaterials.2009.12.052
[22] R. C. Barthus, L. M. Lira and S. I. Córdoba de Torresi, “Conducting Polymer-Hydrogel Blends for Electrochemically Controlled Drug Release Devices,” Journal of the Brazilian Chemical Society, Vol. 19, No. 4, 2008, pp. 630-636. doi:10.1590/S0103-50532008000400004
[23] L. M. Lira and S. I. Córdoba de Torresi, “Polymeric Electro-Mechanic Devices Applied to Antibiotic-Controlled Release,” Sensors and Actuators B, Vol. 130, No. 2, 2008, pp. 638-644. doi:10.1016/j.snb.2007.10.020
[24] L. M. Lira and S. I. Córdoba de Torresi, “Conducting Polymer-Hydrogel Composites for Electrochemical Release Devices: Synthesis and Characterization of Semi-Interpenetrating Polyaniline-Polyacrylamide Networks,” Electrochemistry Communications, Vol. 7, No. 7, 2005, pp. 717-723. doi:10.1016/j.elecom.2005.04.027
[25] P. J. Sinko, “Martin’s Physical Pharmacy and Pharmaceutical Sciences,” Lippincott Williams & Wilkins, Baltmore, 2008.
[26] A. Safavi and H. Abdollahi, “Optical Sensor for High pH Values,” Analytica Chimica Acta, Vol. 367, No. 1-3, 1998, pp. 167-173. doi:10.1016/S0003-2670(98)00079-8
[27] G. Maia, R. M. Torresi, E. A. Ticianelli and F. C. Nart, “Charge Compensation Dynamics in the Redox Processes of Polypyrrole-Modified Electrodes,” Journal of Physical Chemistry, Vol. 100, No. 39, 1996, pp. 15910-15916. doi:10.1021/jp9607780
[28] P. L. Ritger and N. A. Peppas, “A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs,” Journal of Controlled Release, Vol. 5, No. 1, 1987, pp. 23-36. doi:10.1016/0168-3659(87)90034-4

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.