"Smart fats", healthy brain and function of lipid-sensing NMDA receptors


NMDA receptor channels play a significant role in learning and memory and their dysfunction can cause neuronal cell death leading to dementia. Research had shown that lipids change the risk for dementia, especially some omega-3 lipids appear to lower Alz-heimer’s risk, yet only limited research exists on the modulation of NMDA receptor channels by lipids. Here we review recent literature concerning molecular determinants that influence the NMDA receptor channel gating via membrane lipids and fatty acids with profound significance for understanding how altered NMDA signalling leads to neuronal cell death linked to age-related dementia’s. Future discovery of lipid-like modulators of NMDA receptor function offer the potential for the development of new bioceu-ticals and affordable nutritional supplements to combat neuronal degeneration as well as to promote well being and healthy aging.

Share and Cite:

Kloda, A. and Martinac, B. (2012) "Smart fats", healthy brain and function of lipid-sensing NMDA receptors. Advances in Biological Chemistry, 2, 106-114. doi: 10.4236/abc.2012.22013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bliss, T.V. and Collingridge, G.L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31-39 doi:10.1038/361031a0
[2] Castellano, C., Cestari, V. and Ciamei, A. (2001) NMDA receptors in learning and memory processes. Current Drug Targets, 2, 273-283. doi:10.2174/1389450013348515
[3] Cull-Candy, S., Brickley, S. and Farrant, M. (2001) NMDA receptor subunits: Diversity, development and disease. Current Opinion in Neurobiology, 11, 327-335. doi:10.1016/S0959-4388(00)00215-4
[4] Furukawa, H. and Gouaux, E. (2003) Mechanisms of activation, inhibition and specificity: Crystal structures of the NMDA receptor NR1 ligand-binding core. The EM- BO Journal, 22, 2873-85. doi:10.1093/emboj/cdg303
[5] Dingledine, R., Borges, K., Bowie, D. and Traynelis, S.F. (1999) The glutamate receptor ion channels. Pharmacological Reviews, 51, 7-61.
[6] Kohr, G. (2006) NMDA receptor function: Subunit composition versus spatial distribution. Cell and Tissue Research, 326, 439-446. doi:10.1007/s00441-006-0273-6
[7] Paoletti, P. and Neyton, J. (2007) NMDA receptor subunits: Function and pharmacology. Current Opinion in Neurobiology, 7, 39-47. doi:10.1016/j.coph.2006.08.011
[8] Michailidis, I.E., Helton, T.D., Petrou, V.I., Mirshahi, T., Ehlers, M.D. and Logothetis, D.E. (2007) Phosphatidylinositol-4,5-bisphosphate regulates NMDA receptor activity through alpha-actinin. The Journal of Neuroscience, 27, 5523-32. doi:10.1523/JNEUROSCI.4378-06.2007
[9] Brewer, G.J. and Cotman, C.W. (1989) NMDA receptor regulation of neuronal morphology in cultured hippocam- pal neurons. Neuroscience Letters, 99, 268-273. doi:10.1016/0304-3940(89)90458-8
[10] Komuro, H. and Rakic, P. (1993) Modulation of neuronal migration by NMDA receptors. Science, 260, 95-97. doi:10.1126/science.8096653
[11] Constantine-Paton, M., Cline, H.T. and Debski, E. (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annual Review of Neuroscience, 13, 129-154. doi:10.1146/annurev.ne.13.030190.001021
[12] Fox, K. and Daw, N.W. (1993) Do NMDA receptors have a critical function in visual cortical plasticity? Trends in Neurosciences, 16, 116-122. doi:10.1016/0166-2236(93)90136-A
[13] Malenka, R.C. and Nicol,l R.A. (1993) NMDA-receptor-dependent synaptic plasticity: Multiple forms and mechanisms. Trends in Neurosciences, 16, 521-527. doi:10.1016/0166-2236(93)90197-T
[14] Schrattenholz, A. and Soskic, V. (2006) NMDA receptors are not alone: Dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling. Current Topics in Medicinal Chemistry, 6, 663-686. doi:10.2174/156802606776894519
[15] Sugihara, H., Moriyoshi, K., Ishii, T., Masu, M. and Nakanishi, S. (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochemical and Biophysical Research Communications, 185, 826-832. doi:10.1016/0006-291X(92)91701-Q
[16] Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31- 108. doi:10.1146/annurev.ne.17.030194.000335
[17] Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. and Nakanishi, S. (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31-37. doi:10.1038/354031a0
[18] Siegel, S.J., Brose, N., Janssen, W.G., Gasic, G.P., Jahn, R., Heinemann, S.F. and Morrison, J.H. (1994) Regional, cellular, and ultrastructural distribution of N-methyl-D- aspartate receptor subunit 1 in monkey hippocampus. Proceedings of the National Academy of Sciences USA, 91, 564-568. doi:10.1073/pnas.91.2.564
[19] Aoki, C., Venkatesan, C., Go, C.G., Mong, J.A. and Dawson, T.M. (1994) Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. The Journal of Neuroscience, 14, 5202-5222.
[20] Gracy, K.N. and Pickel, V.M. (1995) Comparative ultrastructural localization of the NMDAR1 glutamate receptor in the rat basolateral amygdala and bed nucleus of the stria terminalis. The Journal of Comparative Neurology, 362, 71-85.
[21] Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M. and Mishina, M. (1992) Molecular diversity of the NMDA receptor channel. Nature, 358, 36-41. doi:10.1038/358036a0
[22] Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K. and Mishina, M. (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature, 357, 70-74. doi:10.1038/357070a0
[23] Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B. and Seeburg, P.H. (1992) Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 256, 1217-1221. doi:10.1126/science.256.5060.1217
[24] Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M. and Nakanishi, S. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. The Journal of Biological Chemistry, 268, 2836-2843.
[25] Becker, J., Li, Z. and Noe, C.R. (1998) Molecular and pharmacological characterization of recombinant rat/mice N-methyl-D-aspartate receptor subtypes in the yeast Sac- charomyces cerevisiae. European Journal of Biochemistry, 256, 427-435. doi:10.1046/j.1432-1327.1998.2560427.x
[26] Wang, J.K.T. and Thukral, V. (1996) Presynaptic NMDA receptors display physiological characteristics of homomeric complexes of NR1 subunits that contain the exon 5 insert in the N-terminal domain. Journal of Neurochemistry, 66, 865-868. doi:10.1046/j.1471-4159.1996.66020865.x
[27] Aistrup, G.L., Szentirmay, M., Kumar, K.N., Babcock, K.K., Schowen, R.L. and Michaelis, E.K. (1996) Ion channel properties of a protein complex with characteristics of a glutamate/N-methyl-D-aspartate receptor. FEBS Letters, 394, 141-148. doi:10.1016/0014-5793(96)00938-6
[28] Mayer, M.L., Westbrook, G.L., Guthrie, P.B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature, 309, 261-263. doi:10.1038/309261a0
[29] Nowak, L., Bregestovsky, P., Ascher, P., Herbet, A. and Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature, 307, 462-465. doi:10.1038/307462a0
[30] Burnashev, N., Monyer, H., Seeburg, P.H. and Sakmann, B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron, 8, 189-198. doi:10.1016/0896-6273(92)90120-3
[31] Kloda, A. and Adams, D.J. (2006) Mutations within the selectivity filter of the NMDA receptor-channel influence voltage dependent block by 5-hydroxytryptamine. British Journal of Pharmacology, 149, 163-169. doi:10.1038/sj.bjp.0706849
[32] BEhe, P., Stern, D.J.A., Wyllie, M., Nassar, R., Schoepfer, D. and Colquhoun, D. (1995) determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proceedings of the Royal Society of London Series B-Biological Sciences, 262, 205-213. doi:10.1098/rspb.1995.0197
[33] Kashiwagi, K., Pahk, A.J., Masuko, T., Igarashi, K. and Williams, K. (1997) Block and modulation of N-methyl- D-aspartate receptors by polyamines and protons: Role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Molecular Pharmacology, 52, 701-713.
[34] Schneggenburger, R. and Ascher, P. (1997) Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron, 18, 167-177.
[35] Traynelis, S.F., Burgess, M.F., Zheng, F., Lyuboslavsky, P. and Powers, J.L. (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. The Journal of Neuroscience, 18, 6163-6175.
[36] Zheng, X., Zhang, L., Wang, A.P., Araneda, R.C., Lin, Y., Zukin, R.S. and Bennett, M.V.L. (1999) Mutation of structural determinants lining the N-methyl-D-aspartate receptor channel differentially affects phencyclidine block and sper-mine potentiation and block. Neuroscience, 93, 125-134. doi:10.1016/S0306-4522(99)00154-2
[37] Single, F.N., Rozov, A., Burnashev, N., Zimmermann, F., Hanley, D.F., Forrest, D., Curran, T., Jensen, V., Hvalby, O., Sprengel, R. and Seeburg, P.H. (2000) The Journal of Neuroscience, 20, 2558-2566.
[38] Hall, R. A. and Soderling, T.R. (1997) Differential surface expression and phosphorylation of the N-methyl-D- aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. The Journal of Biological Chemistry, 272, 4135-4140. doi:10.1074/jbc.272.7.4135
[39] Huh, K.H. and Wenthold, R.J. (1999) Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. The Journal of Biological Chemistry, 274, 151-157. doi:10.1074/jbc.274.1.151
[40] Mishizen-Eberz, A.J., Rissman, R.A., Carter, T.L., Ico- nomovic, M.D. Wolfe, B.B. and Armstrong, D.M. (2004) Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiology of Disease, 15, 80-92. doi:10.1016/j.nbd.2003.09.016
[41] Martinac, B., Rodhe, P.R., Battle, A.R., Petrov, E., Pal, P., Foo, A.F.W., Vasquez, V., Huynh, T. and Kloda, A. (2010) Studying mechanosensitive ion channels using liposomes. In: Weissig, V., Ed., Methods in Molecular Biology-Li-posomes, Humana Press, London, 31-53.
[42] Kloda, A., Lua, L., Hall, R., Adams, D.J. and Martinac, B. (2007) Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. PNAS, 104, 1540-1545. doi:10.1073/pnas.0609649104
[43] Paoletti, P. and Ascher, P. (1994) Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neu-ron, 13, 645-655. doi:10.1016/0896-6273(94)90032-9
[44] Casado, M. and Ascher, P. (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: Common features with mechanosensitivity. Journal of Physiology, 513, 317-330. doi:10.1111/j.1469-7793.1998.317bb.x
[45] Johnson, J.-W. and Ascher, P. (1990) Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophysical Journal, 57, 1085-1090. doi:10.1016/S0006-3495(90)82626-6
[46] Singh, P., Doshi, S., Spaethling, J.M., Hockenberry, A.J., Patel, T.P., Geddes-Klein, D.M., Lynch, D.R. and Meaney, D.F. (2012) N-methyl-D-aspartate receptor mechanosensitivity is governed by C terminus of NR2B subunit. The Journal of Biological Chemistry, 287, 4348-4359. doi:10.1074/jbc.M111.253740
[47] Colin, A., Reggers, J., Castronovo, V. and Ansseau, M. (2003) Lipids, depression and suicide. Encephale, 29, 49- 58.
[48] Bastiaanse, E.M., H?ld, K.M. and Van der Laarse, A.T. (1997) The effect of membrane cholesterol content on ion transport processes in plasma membranes. Cardiovascular Research, 33, 272-283. doi:10.1016/S0008-6363(96)00193-9
[49] Ikonen, E. (2001) Roles of lipid rafts in membrane transport. Current Opinion in Cell Biology, 13, 470-477. doi:10.1016/S0955-0674(00)00238-6
[50] Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 1, 31-39. doi:10.1038/35036052
[51] Brown, D.A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annual Review of Cell and Development Biology, 14, 111-136. doi:10.1146/annurev.cellbio.14.1.111
[52] Becher, A. White, J.H. and McIlhinney, R.A. (2001) The gamma-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. The Journal of Neuroscience, 79, 787-795. doi:10.1046/j.1471-4159.2001.00614.x
[53] Hering, H., Lin, C.C. and Sheng, M. (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. The Journal of Neuroscience, 23, 3262-3271.
[54] Frank, C., Giammarioli, A.M., Pepponi, R., Fiorentini, C. and Rufini, S. (2004) Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocampal primary culture. FEBS Letters, 566, 25-29. doi:10.1016/j.febslet.2004.03.113
[55] Suh, B.C. and Hille, B. (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Current Opinion in Neurobiology, 15, 370-378. doi:10.1016/j.conb.2005.05.005
[56] Zukin, R.S. and Bennett, M.V. (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends in Neurosciences, 18, 306-313. doi:10.1016/0166-2236(95)93920-S
[57] Wechsler, A. and Teichberg, V.I. (1998) Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. The EMBO Journal, 17, 3931-3939. doi:10.1093/emboj/17.14.3931
[58] Ehlers, M.D., Zhang, S., Bernhadt, J.P. and Huganir, R.L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell, 84, 745- 755. doi:10.1016/S0092-8674(00)81052-1
[59] Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M. and Sheng, M. (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature, 385, 439-442. doi:10.1038/385439a0
[60] Krupp, J.J., Vissel, B., Thomas, C.G., Heinemann, S.F. and Westbrook, G.L. (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+- dependent inactivation of NMDA receptors. The Journal of Neuroscience, 19, 1165-1178.
[61] Van Rossum, D., Kuhse, J. and Betz, H. (1999) Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. The Journal of Neuroscience, 72, 962-973. doi:10.1046/j.1471-4159.1999.0720962.x
[62] Leonard, A.S., Bayer, K.U., Merrill, M.A., Lim, I.A., Shea, M.A., Schulman, H. and Hell, J.W. (2002) Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/cal-modulin and alpha-actinin. The Journal of Biological Chemistry, 277, 48441-48448. doi:10.1074/jbc.M205164200
[63] Zhang, S., Ehlers, M.D., Bernhardt, J.P., Su, C.T. and Huganir, R.L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron, 21, 443-453. doi:10.1016/S0896-6273(00)80553-X
[64] Rosenmund, C. and Westbrook, G.L. (1993) Calcium in- duced actin depolarization reduces NMDA channel activity. Neuron, 10, 805-814. doi:10.1016/0896-6273(93)90197-Y
[65] Allison, D.W., Gelfand, V.I., Spector, I. and Craig, A.M. (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: Differential attachment of NMDA versus AMPA receptors. The Journal of Neuroscience, 18, 2423-2436.
[66] Morishita, W., Marie, H. and Malenka, R.C. (2005) Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neuroscience, 8, 1043-1050. doi:10.1038/nn1506
[67] Bauer, K., Kratzer, M., Otte, M., de Quintana, K.L., Hagmann, J., Arnold, G.J., Eckerskorn, C., Lottspeich, F. and Siess, W. (2000) Human CLP36, a PDZ-domain and LI- M-domain protein, binds to alpha-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood, 96, 4236-4245.
[68] Gonzalez, A.M., Otey, C., Edlund, M. and Jones, J.C. (2001) Interactions of a hemidesmosome component and actinin family members. Journal of Cell Science, 114, 4197-4206.
[69] Feng, S.J., Reséndiz J.C., Christodoulides N., Lu X., Arboleda D., Berndt M.C. and Kroll M.H. (2002) Pathological shear stress stimulates the tyrosine phosphorylation of alpha-actinin associated with the glycoprotein Ib-IX complex. Biochemistry, 41, 1100-1108. doi:10.1021/bi0156005
[70] Burn, P., Rotman, A., Meyer, R.K. and Burger, M.M. (1985) Diacylglycerol in large alpha-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature, 314, 469-472. doi:10.1038/314469a0
[71] Fukami, K., Furuhashi, K., Inagaki, M., Endo, T., Hatano, S. and Takenawa, T. (1992) Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature, 359, 150-152. doi:10.1038/359150a0
[72] Fukami, K., Sawada, N., Endo, T. and Takenawa, T. (1996) Identification of a phosphatidylinositol 4,5-bis-phosphate- binding site in chicken skeletal muscle alpha-actinin. The Journal of Biological Chemistry, 271, 2646-2650. doi:10.1074/jbc.271.5.2646
[73] Han, X., Li, G. and Lin, K. (1997) Interactions between smooth muscle alpha-actinin and lipid bilayers. Biochemistry, 36, 10364-10371. doi:10.1021/bi962929v
[74] Fritz, M., Zimmermann, R.M., B?mann, M. and Gaub, H.E. (1993) Actin binding to lipid-inserted alpha-actinin. Biophysical Journal, 65, 1878-1885. doi:10.1016/S0006-3495(93)81252-9
[75] Niggli, V. and Gimona, M. (1993) Evidence for a ternary interaction between alpha-actinin, (meta)vinculin and acidic-phospholipid bilayers. European Journal of Biochemistry, 213, 1009-1015. doi:10.1111/j.1432-1033.1993.tb17848.x
[76] Toker, A. (1998) The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Current Opinion in Cell Biology, 10, 254-261. doi:10.1016/S0955-0674(98)80148-8
[77] Horne, E.A. and Dell’Acqua, M.L. (2007) Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long- term depression. The Journal of Neuroscience, 27, 3523- 3534. doi:10.1523/JNEUROSCI.4340-06.2007
[78] Mandal, M, and Yan, Z. (2009) Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons. Molecular Pharmacology, 76, 1349-1359. doi:10.1124/mol.109.058701
[79] Stokes, C.E. and Hawthorne, J.N. (1987) Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. The Journal of Neuroscience, 48, 1018-1021. doi:10.1111/j.1471-4159.1987.tb05619.x
[80] Landman, N., Jeong, S.Y., Shin, S.Y., Voronov, S.V., Serban, G., Kang, M.S., Park, M.K., DiPaolo, G., Chung, S. and Kim, T.W. (2006) Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. PANS, 103, 19524-19529. doi:10.1073/pnas.0604954103
[81] Berman, D.E., Dall’Armi, C., Voronov, S.V., McIntire, L.B., Zhang, H., Moore, A.Z., Staniszewski, A., Arancio, O., Kim, T.W. and Di Paolo, G. (2008) Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bis- phosphate metabolism. Nature Neuroscience, 11, 547- 554. doi:10.1038/nn.2100
[82] McBain, C.J. and Mayer, M.L. (1994) N-methyl-D-as- partic acid receptor structure and function. Physiological Reviews, 74, 723-760.
[83] Johnson, T.D. (1996) Modulation of channel function by polyamines. Trends in Pharmacological Sciences, 17, 22- 27. doi:10.1016/0165-6147(96)81566-5
[84] Williams, K. (1997) Modulation and block of ion channels: A new biology of polyamines. Cell Signaling, 9, 1- 13. doi:10.1016/S0898-6568(96)00089-7
[85] Chemin, J., Patel, A., Delmas, P., Sachs, F., Lazdunski, M. and Honoré, E. (2007) Regulation of the mechano-gated K2P channel TREK-1 by membrane phospholipids. Current Top in Membranes, 59, 155-170. doi:10.1016/S1063-5823(06)59007-6
[86] Lopes, C.M., Rohacs, T., Czirjak, G., Balla, T., Enyedi, P. and Logothetis, D.E. (2005) PiP2-hydrolysis underlies agonist-induced inhibition and regulates voltage-gating of 2-P domain K+ channels. The Journal of Physiology, 564, 117-129. doi:10.1113/jphysiol.2004.081935
[87] Parnas, M., Katz, B., Lev, S., Tzarfaty, V., Dadon, D., Gordon-Shaag, A., Metzner, R.Y. and Minke, B. (2009) Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. The Journal of Neuroscience, 29, 2371-2383. doi:10.1523/JNEUROSCI.4280-08.2009
[88] Petrou, S,, Ordway, R.W., Singer, J.J. and Walsh, J.V. Jr., (1993) A putative fatty acid-binding domain of the NMDA receptor. Trends in Biochemical Sciences, 18, 41-42
[89] Dumuis, A., Sebben, M., Fagni, L., Prezeau, L., Manzoni, O., Cragoe, E.J. and Bockaert, J. (1993) Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca2+ exchanger in neuronal cells. Molecular Pharmacology, 43, 976-981.
[90] Nishikawa, M., Kimura, S. and Akaike, N. (1994) Facilitatory effect of decosahexaenoic acid on N-methyl-D- aspartate response in pyramidal neurons of rat cerebral cortex. The Journal of Physiology, 475, 83-93.
[91] Darios, F. and Davletov, B. (2006) Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin. Nature, 440, 813-817. doi:10.1038/nature04598
[92] Okada, D., Yamagishi, S. and Sugiyama, H. (1989) Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fiber synapses and Schaffer/commissural synapses. Neuroscience Letters, 100, 141-146.
[93] Fujimoto, K., Yao, K., Miyazawa, T., Hirano, H., Nishikawa, M., Kimura, S., Maruyama, K. and Nonaka M. (1989) Health effects of fish and fish oils. ARTS biomedical Publishers & Distributors, Newfoundland, 275-284.
[94] Tanabe, Y., Hashimoto, M., Sugioka, K., Maruyama, M., Fuji, Y. Hagiwara, R., Hara, T., Hossain, S.M. and Shido, O. (2004) Improvement of spatial cognition with dietary docosahexaenoic acid is associated with an increase in Fos expression in rat CA1 hippocampus. Clinical and Experimental Pharmacology & Physiology, 31, 700-703.
[95] Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L. and Luck, S. (1986) Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. PNAS, 83, 4021- 4025. doi:10.1073/pnas.83.11.4021
[96] Soderberg, M., Edlunk, C., Kristensson, K. and Dallner, G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids, 26, 421-425.
[97] Maclean, C.H., Issa, A.M., Newberry, S.J., Mojica, W.A., Morton, S.C. and Garland, R.H., et al. (2005) Effects of omega-3 fatty acids on cognitive function with aging, dementia, and neurological diseases. Evidence Report— Technology Assessement (Summary) 114, 1-3
[98] Calon, F., Lim, G.P., Yang, F., Morihara, T., Teter, B. and Ubeda, O., et al. (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mou- se model. Neuron, 43, 633-645. doi:10.1016/j.neuron.2004.08.013
[99] Bourre, J.M. (2004) Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. The Journal of Nutrition Health and Aging, 8, 163-174.
[100] Marean, C.W. (2010) Pinnacle point cave 13B (Western Cape Province, South Africa) in context: The cape floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59, 425-443. doi:10.1016/j.jhevol.2010.07.011
[101] Santos, S.F., Pierrot, N. and Octave, J.N. (2010) Network excitability dysfunction in Alzheimer’s disease: Insights from in vitro and in vivo models. Reviews in the Neurosciences, 21, 153-171. doi:10.1515/REVNEURO.2010.21.3.153
[102] Decker, H., Jürgensen, S., Adrover, M.F., Brito-Moreira, J., Bomfim, T.R., Klein, W.L., Epstein, A.L., De Felice, F.G., Jerusalinsky, D. and Ferreira, S.T. (2010) N-methyl- D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. Journal of Neurochemistry, 115, 1520-1529. doi:10.1111/j.1471-4159.2010.07058.x
[103] Henderson, S. and Broe, G.A. (2010) Dementia in Aboriginal Australians. Australian and New Zealand Journal of Psychiatry, 44, 869-4871. doi:10.3109/00048674.2010.514858
[104] Marszalek, J.R. and Lodish H.F. (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: Breastmilk and fish are good for you. Annual Reviews of Cell and Development Biology, 21, 633-657. doi:10.1146/annurev.cellbio.21.122303.120624
[105] Wainwright, P.E. (2002) Dietary essential fatty acids and brain function: A developmental perspective on mechanisms. Proceedings of the Nutrition Society, 61, 61-69. doi:10.1079/PNS2001130

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.