Influence of H-Type and L-Type Activated Carbon in the Photodegradation of Methylene Blue and Phenol under UV and Visible Light Irradiated TiO2


Photodegradation of methylene blue (MB) and phenol (Ph) on TiO2 in presence of H-type and L-type activated carbons (AC) was studied. Photodegradation of MB and Ph were studied under two different lamps and results were compared against those obtained on a commercial TiO2. Apparent first order rate constant for the degradation of MB was higher in presence of any AC in comparison of TiO2 alone while only in presence of ACco2-800phenol was photodegradated in shorter irradiation time than that required by TiO2. It can be concluded that TiO2 enhances its photoactivity by a factor up to 8.7 in the degradation of MB in presence of AC and this effect is associated to the specific surface properties of AC.

Share and Cite:

J. Matos, K. Quintana and A. García, "Influence of H-Type and L-Type Activated Carbon in the Photodegradation of Methylene Blue and Phenol under UV and Visible Light Irradiated TiO2," Modern Research in Catalysis, Vol. 1 No. 1, 2012, pp. 1-9. doi: 10.4236/mrc.2012.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, “Photocatalytic Degradation Path-way of Methylene Blue in Water,” Applied Catalysis B: Environmental, Vol. 31, No. 2, 2001, pp. 145-157. doi:10.1016/S0926-3373(00)00276-9
[2] J. M. Herrmann, C. Guillard and P. Pichat, “Heterogeneous Photocatalysis: An Emerging Technology for Water Treatment,” Catalysis Today, Vol. 17, No. 1-2, 1993, pp. 7-20. doi:10.1016/0920-5861(93)80003-J
[3] O. Legrini and E. Oliveros, “Photochemical Processes for Water Treatment,” Chemical Reviews, Vol. 93, No. 2, 1993, pp. 671-698. doi:10.1021/cr00018a003
[4] J. M. Herrmann, J. Didier and P. Pichat, “Effect of Chromium Doping on the Electrical and Catalytic Properties of Powder Titania under UV and Visible Illumination,” Chemical Physics Letters, Vol. 108, No. 6, 1984, pp. 618- 622. doi:10.1016/0009-2614(84)85067-8
[5] T. Cordero, J. M. Chovelon, C. Duchamp, C. Ferronato and J. Matos, “Surface Nano-Aggregation and Photocatalytic Activity of TiO2 on H-Type Activated Carbons,” Applied Catalysis B: Environmental, Vol. 73, No. 3-4, 2007, pp. 227-235. doi:10.1016/j.apcatb.2006.10.012
[6] T. Cordero, C. Duchamp, J. M. Chovelon, C. Ferronato and J. Matos, “Influence of L-Type Activated Carbons on Photocatalytic Activity of TiO2 in 4-Chlorophenol Photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 191, No. 2-3, 2007, pp. 122-131. doi:10.1016/j.jphotochem.2007.04.012
[7] J. Matos, A. García and P. S. Poon, “Environmental Green Chemistry Applications of Nanoporous Carbons,” Journal of Materials Science, Vol. 45, No. 18, 2010, pp. 4934-4944. doi:10.1007/s10853-009-4184-2
[8] J. Matos, A. García, T. Cordero, J. M. Chovelon and C. Ferronato, “Eco-Friendly TiO2-AC Photocatalyst for the Selective Photooxidation of 4-Chlorophenol,” Catalysis Letter, Vol. 130, No. 3-4, 2009, pp. 568-574. doi:10.1007/s10562-009-9989-8
[9] W. Wang, C. Gomes and J. L. Faria, “Photocatalytic Degradation of Chromotrope 2R Using Nanocrystalline TiO2/Activated-Carbon Composite Catalysts,” Applied Catalysis B: Enviromental, Vol. 70, No. 1-4, 2007, pp. 470-478.
[10] J. M. Peralta-Hernández, J. Manríquez, Y. Meas-Vong, F. J. Rodríguez, T. W. Chapman, M. I. Maldonado and L. A. Godínez, “Photocatalytic Properties of Nano-Structured TiO2-Carbon Films Obtained by Means of Electrophoretic Deposition,” Journal of Hazardous Materials, Vol. 147, No. 1-2, 2007, pp. 588-593. doi:10.1016/j.jhazmat.2007.01.053
[11] J. Matos, A. Garcia, L. Zhao and M. M. Titirici, “Solvothermal Carbon-Doped TiO2 Photocatalyst for the Enhanced Methylene Blue Degradation under Visible Light,” Applied Catalysis A: General, Vol. 390, No. 1-2, 2010, pp. 175-182. doi:10.1016/j.apcata.2010.10.009
[12] J. Matos, E. García-López, L. Palmisano, A. García and G. Marci, “Influence of Activated Carbon in TiO2 and ZnO Mediated Photo-Assisted Degradation of 2-Propanol in Gas-Solid Regime,” Applied Catalysis B: Environmental, Vol. 99, No. 1-2, 2010, pp. 170-180. doi:10.1016/j.apcatb.2010.06.014
[13] A. P. Terzyk, “The Influence of Activated Carbon Surface Chemical Composition on the Adsorption of Acetaminophen (Paracetamol) in Vitro: Part II. TG, FTIR, and XPS Analysis of Carbons and the Temperature Dependence of Adsorption Kinetics at the Neutral pH,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 177, No. 1, 2001, pp. 23-45. doi:10.1016/S0927-7757(00)00594-X
[14] J. Matos, T. Marino, R. Molinari and H. García, “Hydrogen Photoproduction under Visible Irradiation of Au-TiO2/Activated Carbon,” Applied Catalysis A: General, Vol. 417-418, 2012, pp. 263-272. doi:10.1016/j.apcata.2011.12.047
[15] J. Matos, J. Laine, J. M. Herrmann, D. Uzcategui and J. L. Brito, “Influence of Activated Carbon upon Titania on Aqueous Photocatalytic Consecutive Runs of Phenol Photodegradation,” Applied Catalysis B: Environmental, Vol. 70, 2007, pp. 461-469. doi:10.1016/j.apcatb.2005.10.040

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.