Expression of the transcription factor Xvent-2 in Xenopus laevis embryogenesis


Till now the transcription factor Xvent-2 has been studied in Xenopus embryos only by the mRNA testing. We use immunochemical methods for testing of the Xvent-2 protein and gradient-centrifugation methods for estimation of activity of its mRNA. Our results show that the Xvent-2 protein is present in eggs and early embryos. The Xvent-2 mRNA is absent at any of these developmental stages. The majority of mRNA synthesized on the zygotic genome was stored in informosomes, while only its small part could be revealed in polysomes. The spatial patterning of the Xvent-2 protein at different developmental stages did not entirely agree with that of its mRNA. These data indicate that the Xvent-2 protein functioning in Xenopu embryos is regulated not only at the transcription, but at translation and posttranslation as well. We propose that the activation of translation on the masked Xvent-2 mRNA may lead to blood differentiation and cell migration.

Share and Cite:

Pshennikova, E. and Voronina, A. (2012) Expression of the transcription factor Xvent-2 in Xenopus laevis embryogenesis. American Journal of Molecular Biology, 2, 124-131. doi: 10.4236/ajmb.2012.22014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Voronina, A.S. and Pshennikova, E.S. (2010) mRNPs: From informosomes to stress granules. Molecular Biology, 44, 520-528. doi:10.1134/S0026893310040035
[2] Voronina, A.S. (2002) Translational regulation in early development of eukaryotes. Molecular Biology, 36, 956-969. doi:10.1023/A:1021669506664
[3] Onichtchouk, D., Gawantka, V., Dosch, R., Delius, H., Hirschfeld, K., Blumenstock, C. and Niehrs, C. (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling parthway controlling dorsoventral patterning of Xenopus mesoderm. Development, 122, 3045-3053.
[4] Schmidt, J.E., von Dassow, G. and Kimelman, D. (1996) Regulation of dorsal-ventral patterning: The ventralizing effects of the novel Xenopus homeobox gene Vox. Development, 122, 1711-1721.
[5] Ladher, R., Mohun, N.J., Smith, J.C. and Snape, A.M. (1996) Xom: A Xenopus homeobox gene that mediates the early effects of BMP-4. Development, 122, 2385-2394.
[6] Papalopulu, N. and Kintner, C. (1996) A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Developmental Biology, 174, 104-114. doi:10.1006/dbio.1996.0055
[7] Rastegar, S., Friedle, H., Frommer, G. and Knochel, W. (1999) Transcriptional regulation of Xvent homeobox genes. Mechanisms of Development, 81, 139-149. doi:10.1016/S0925-4773(98)00239-1
[8] Onichtchouk, D., Glinka, A. and Niehrs, C. (1998) Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development, 125, 1447-1456.
[9] Melby, A.E., Clements, W.K. and Kimelman, D. (1999) Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Developmental Biology, 211, 293-305. doi:10.1006/dbio.1999.9296
[10] Trindade, M., Tada, M. and Smith, J.C. (1999) DNA-binding specificity and embryological function of Xom (Xvent-2). Developmental Biology, 216, 442-456. doi:10.1006/dbio.1999.9507
[11] Melby, A.E., Beach, C., Mullins, M. and Kimelman, D. (2000) Patterning the early Zebrafish by the opposing actions of bozozok and vox/vent. Developmental Biology, 224, 275-285. doi:10.1006/dbio.2000.9780
[12] Schuler-Metz, A., Knochel, S., Kaufmann, E. and Knochel, W. (2000) The homeodomain transcription factor Xvent-2 mediates autocatalytic regulation of BMP-4 expression in Xenopus embryos. The Journal of Biological Chemistry, 275, 34365-34374. doi:10.1074/jbc.M003915200
[13] Martynova, N., Eroshkin, F., Ermakova, G., Bayramov, A., Gray, J., Grainger, R. and Zaraisky, A. (2004) Patterning the forebrain: FoxA4a/Pintallavis and Xvent-2 determine the posterior limit of Xanf1 expression in the neural plate. Development, 131, 2329-2338. doi:10.1242/dev.01133
[14] Voronina, A.S. and Potekhina, E.S. (1999) Translational regulation of synthesis of proteins responsible for dorsoventral differentiation of Xenopus laevis embryos. Russian Journal of Developmental Biology, 30, 83-90.
[15] Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[16] Nieuwkoop, P.D. and Faber, J. (1956) Normal table of Xenopus laevis (daudin): A systematical and chronologica survey of the development from the fertilized egg till the end of metamorphosis. North-Holland, Amsterdam.
[17] Pshennikova, E.S. and Voronina, A.S. (2008) Detection of the Xvent-2 transcription factor in early development of Xenopus laevis. Molecular Biology, 42, 901-905. doi:10.1134/S0026893308060101
[18] Dent, J.A., Polson, A.G. and Klymkowsky, M.W. (1989) A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development, 105, 61-74.
[19] Evdokimova, V.M., Wei, C.L., Sitikov, A.S., Simonenko, P.N., Lazarev, O.A., Vasilenko, K.S., Ustinov, V.A., Hershey, J.W. and Ovchinnikov, L.P. (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family. The Journal of Biological Chemistry, 270, 3186-3192. doi:10.1074/jbc.270.7.3186
[20] Zhu, Z. and Kirschner, M. (2002) Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Developmental Cell, 3, 557-568. doi:10.1016/S1534-5807(02)00270-8
[21] Fritz, B.R. and Sheets, M.D. (2001) Regulation of the mRNAs encoding proteins of the BMP signaling pathway during the maternal stages of Xenopus development. Developmental Biology, 236, 230-243. doi:10.1006/dbio.2001.0324
[22] Voronina, A.S. and Pshennikova, E.S. (2006) Activity of specific mRNAs in early development of Xenopus and Rana embryos. Journal of Biological Sciences, 6, 115-120. doi:10.3923/jbs.2006.115.120
[23] Voronina, A.S., Pshennikova, E.S. and Shatilov, D.V. (2003) Distribution of the Xvent-2 mRNA between informosomes and polysomes in early frog development. Molecular Biology, 37, 429-435. doi:10.1023/A:1024279025289 doi:10.1023/A:1024295528924
[24] Kikkawa, M., Yamazaki, M., Izutsu, Y. and Maéno, M. (2001) Two step induction of primitive erythrocytes in Xenopus laevis embryos: Signals from the vegetal endoderm and the overlying ectoderm. The International Journal of Developmental Biology, 45, 387-396.
[25] Ciau-Uitz, A., Liu, F. and Patient, R. (2010) Genetic control of hematopoietic development in Xenopus and zebrafish. The International Journal of Developmental Biology, 54, 1139-1149. doi:10.1387/ijdb.093055ac
[26] Iraha, F., Saito, Y., Yoshida, K., Kawakami, M., Izutsu, Y., Daar, I.O. and Maéno, M. (2002) Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. Development, Growth and Differentiation, 44, 395-407. doi:10.1046/j.1440-169X.2002.00653.x

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.