Share This Article:

Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: Role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation

Abstract Full-Text HTML XML Download Download as PDF (Size:1193KB) PP. 113-123
DOI: 10.4236/ajmb.2012.22013    3,153 Downloads   6,814 Views   Citations

ABSTRACT

Disturbances in nitric oxide synthase (NOS) and cyclooxygenase (COX) isozyme systems, manifested by the excessive NO and prostaglandin (PGE2) generation, are well-recognized features of gastric mucosal inflammatory responses to H. pylori infection. In this study, we report that H. pylori LPS-induced enhancement in gastric mucosal inducible (i) iNOS expression and COX-2 activation was accompanied by the impairment in constitutive (c) cNOS phosphorylation, up-regulation in the inhibitory κB kinase-β (IKKβ) activation and the increase in the transcriptional factor, NF-κB, nuclear translocation. Further, we show that abrogation of cNOS control over NF-κB activation has lead to induction of iNOS expression and COX-2 activation through S-nitrosylation. Moreover, we demonstrate that the modulatory effect of peptide hormone, ghrelin, on the LPS-induced changes was reflected in the increase in Src/Akt-dependent cNOS activation through phosphorylation and the suppression of IKK-β activity through cNOS-mediated IKK-β protein S-nitrosylation. As a result, ghrelin exerted the inhibitory effect on NF-κB nuclear translocation, thus causing the repression of iNOS gene induction and the inhibition in COX-2 activation through iNOS-dependent S-nitrosylation. Our findings point to cNOS activation as a pivotal element in the signaling cascade by which ghrelin exerts modulatory control over proinflammatory events triggered in gastric mucosa by H. pylori infection.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Slomiany, B. and Slomiany, A. (2012) Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: Role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation. American Journal of Molecular Biology, 2, 113-123. doi: 10.4236/ajmb.2012.22013.

References

[1] Romano, M., Ricci, V., Memoli, A., et al. (1998) Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. Journal of Biological Chemistry, 273, 28560-285663. doi:10.1074/jbc.273.44.28560
[2] Fu, S., Ramanujam, K.S., Wong, A., et al. (1999) Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase-2 in Helicobacter pylori gastritis. Gastroenterology, 116, 1319-1329. doi:10.1016/S0016-5085(99)70496-8
[3] Slomiany, B.L. and Slomiany, A. (2002) Suppression of gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide by peroxisome proliferator-activated receptor ?γ activation. IUBMB Life, 53, 303-308. doi:10.1080/15216540213459
[4] Reider, G., Hofmann, J.A., Hatz, R.A., Stolte, M. and Enders, G.A. (2003) Up-regulation of inducible nitric oxide synthase in Helicobacter pylori-associated gastritis may represent an increased risk factor to develop gastric carcinoma of the intestinal type. International Journal of Medical Microbiology, 293, 403-412. doi:10.1078/1438-4221-00280
[5] Wilson, K.T., Fu, S., Ramanujam, K.S. and Meltzer, S.J. (1998) Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Research, 58, 2929-2934.
[6] Wroblewski, L.A., Peek, R.M. and Wilson, K.T. (2010) Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clinical microbiology Review, 23, 713-739. doi:10.1128/CMR.00011-10
[7] Clancy, R., Varenika, B., Huang, W., et al. (2000) Nitric oxide synthase/COX cross-talk: Nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. Journal of Immunology, 165, 1582-1587.
[8] Cuzzocrea, S. and Salvemini, D. (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney International, 71, 290-297. doi:10.1038/sj.ki.5002058
[9] Kim, S.F., Huri, D.A. and Snyder, S.H. (2005) Inducible nitric oxide synthase binds, s-nitrosylates, and activates cyclooxygenase-2. Science, 310, 1966-1970. doi:10.1126/science.1119407
[10] Ye, Y., Martinez, J.D., Perez-Polo, R.J., Lin, Y., Uretsky, B.F. and Birnbaum, Y. (2008) The role of eNOS, iNOS, and NF-κB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastin. American Journal of Physiology Heart and Circulatory Physiology, 295, H343-H351. doi:10.1152/ajpheart.01350.2007
[11] Marnett, L.J., Wright, T.L., Crews, B.C., Tannenbaum, S.R. and Morrow, J.D. (2000) Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. Journal of Biological Chemistry, 275, 13427-13430. doi:10.1074/jbc.275.18.13427
[12] Lamon, B.D., Upmacis, R.K., Deeb, R.S., Koyuncu, H. and Haijar, D. (2010) Inducible nitric oxide synthase gene deletion exaggerates MAPK-mediated cyclooxy-genase-2 induction by inflammatory stimuli. American Journal of Physiology Heart and Circulatory Physiology, 299, H613H623. doi:10.1152/ajpheart.00144.2010
[13] Bell, R.M., Smith, C.C. and Yellon, D.M. (2002) Nitric oxide as a mediator of delayed pharmacological (A1 receptor triggered) preconditioning; is eNOS masquerading as iNOS?. Cardiovascular Research, 53, 405-413. doi:10.1016/S0008-6363(01)00472-2
[14] Slomiany, B.L. and Slomiany, A. (2011) Helicobacter pylori induces disturbances in gastric mucosal Akt activetion through inducible nitric oxide synthase-dependent S-nitrosylation: Effect of ghrelin. ISRN Gastroenterology, 2011, 8 p. doi:10.5402/2011/308727
[15] Slomiany, B.L. and Slomiany, A. (2011) Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology, 19, 197-204.
[16] Slomiany, B.L. and Slomiany, A. (2011) Role of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 activation through S-nitrosylation: Mechanism of ghrelin action. Open Journal of Gastroenterology, 1, 13-22.
[17] Joo, M., Wright, J.G.., Hu, N.N., et al. (2007) Yin yang 1 enhances cyclooxygenase-2 gene expression in macrophages. American Journal of Physiology Lung and Cell Molecular Physiology, 292, L1219-1226. doi:10.1152/ajplung.00474.2006
[18] Grishin, A.V., Wang, J., Potoka, D.A., et al. (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. Journal of Immunology, 176, 580-588.
[19] Korhonen, R., Lahti, A., Kankaanrata, H. and Moilanen, E. (2005) Nitric oxide production and signaling in inflammation. Current Drug Targets: Inflammation and Allergy, 4, 471-479. doi:10.2174/1568010054526359
[20] Cho, I. and Kim, S.G. (2009) A novel mito-gen-activated protein kinase phosphatase-1 and gluco-corticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR. Molecular Endocrinology, 23, 86-99. doi:10.1210/me.2008-0257
[21] Kang, Y.J., Wingerd, B.A., Arakawa, T. and Smith, W.L. (2006) Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. Journal of Immunology, 177, 8111-8122.
[22] Kojima, M., Hosoda, H., Date, Y., Nakazato, M. and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656-660. doi:10.1038/45230
[23] Sibilia, V., Pagani, F., Rindi, G., et al. (2008) Central ghrelin gastroprotection involves nitric oxide/prostaglandin cross-talk. British Journal of Pharmacology, 154, 688-697. doi:10.1038/bjp.2008.120
[24] Xu, X., Jhun, B.S., Ha, C.H. and Jin, Z.G. (2008) Molecular mechanisms of ghrelin-mediated endothelial nitricoxide synthase activation. Endocrinology, 149, 4183-4192. doi:10.1210/en.2008-0255
[25] Chen, Y.T., Tsai, S.H., Sheu, S. Y. and Tsai, L.H. (2010) Ghrelin improves LPS- induced gastrointestinal mobility disturbances: Role of NO and prostaglandin E2. Shock, 33, 205-212. doi:10.1097/SHK.0b013e3181ae841b
[26] Kang, K.W., Choi, S.Y., Cho, M.K., Lee, C.C. and Kim, S.G. (2003) Thrombin induces nitric-oxide synthase via Ga12/13-coupled protein kinase C-dependent I-κBa phosphorylation and JNK-mediated I-κBa degradation. Journal of Biological Chemistry, 278, 17368-17378. doi:10.1074/jbc.M300471200
[27] Noha, S.M., Atanasov, A.G.., Schuster, D., et al. (2011) Discovery of a novel IKK-β inhibitor by ligand-based virtual screening techniques. Bioorganic and Medicinal Chemistry Letters, 21, 577-583. doi:10.1016/j.bmcl.2010.10.051
[28] Jaffrey, S.R., Erdjument-Bromage, H., Ferris, D., Tempst, P. and Snyder, S.H. (2001) Protein S-nitrosylation: A physicological signal for neuronal nitric acid. Nature Cell Biology, 3, 193-197. doi:10.1038/35055104
[29] Forrester, M.T., Foster, M.W. and Stamler, J.S. (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. Journal of Biological Chemistry, 282, 13977-13983. doi:10.1074/jbc.M609684200
[30] Singh, K., Chaturvedi, R., Asim, M., Barry, D.P., Lewis, N.D., Vitek, M.P. and Wilson, K.T. (2008) The apolipoprotein e-mimetic peptide COG112 inhibits the inflammatory response to Citrobacter rodentium in colonic epithelial cells by preventing NF-κB activation. Journal of Biological Chemistry, 283, 16752-16761. doi:10.1074/jbc.M710530200
[31] Tanaka, H., Fujita, N. and Tsuruo, T. (2005) 3-Phosphoinositide-dependent protein kinase-1-mediated IκΒ Kinase β (IKKβ) phosphorylation activates NF-κΒ signaling. Journal of Biological Chemistry, 280, 40965-40973. doi:10.1074/jbc.M506235200
[32] Kang, J.L., Lee, H.W., Kim, H.J., Lee, H.S., Castranova, V., Lim, C.M. and Koh, Y. (2005) Inhibition of src tyrosine kinase suppresses activation of nuclear factor-κB, and serine and tyrosine phosphorylation of IκΒ-α in lipopolysaccharide-stimulated Raw 264.7 macrophages. Journal of Toxicology and Environmental Health, Part A, 68, 1643-1662. doi:10.1080/15287390500192114
[33] Gupta, S.C., Prasad, S. Reuter, S., et al. (2010) Modification of cysteine 179 of IκBa kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. Journal of Biological Chemistry, 285, 35406-35417. doi:10.1074/jbc.M110.161984
[34] Brandt, S., Kwok, T., Harting, R., Konig, W. and Backert, S. (2005) NF-κΒ activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proceedings of the National Academy of Sciences of the USA, 102, 9300-9305. doi:10.1073/pnas.0409873102
[35] Backert, S. and Neumann, M. (2010) What a disorder: Proinflammatory signaling pathways induced by Helicobacter pylori. Trends in Microbiology, 18, 479-486. doi:10.1016/j.tim.2010.08.003
[36] Rieke, C., Papendieck, A., Sokolova, O. and Naumann, M. (2011) Helicobacterpylori-induced tyrosine pho-sphorylation of IKkβ contributes to NF-κΒ activation. Biological Chemistry, 392, 387-393. doi:10.1515/bc.2011.029
[37] Haynes, M.P., Li, L., Sinha, D., et al. (2003) Src kinase mediates phosphatidylinositol 3-kinsae/Akt-dependent rapid endothelial nitric oxide synthase activation by ghrelin. Journal of Biological Chemistry, 278, 2118-2123. doi:10.1074/jbc.M210828200
[38] Lodeiro, P., Theodoropoulou, M., Pardo, M., Casanueva, F.F. and Camina, J.P. (2009) c-Src regulates Akt signaling in response to ghrelin via b-arrestin signaling-independent and-dependent mechanism. PLoS ONE, 4, e4686.
[39] Yu, S.M., Wu, J.F., Lin, T.L. and Kuo, S.C. (1997) Inhibition of nitric oxide synthase expression by PPM-18, a novel anti-inflammatory agent, in vitro and in vivo. Biochemical Journal, 328, 363-369.
[40] Mori, N., Yamada, Y., Ikeda, S., et al. (2002) Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood, 100, 1828-1834. doi:10.1182/blood-2002-01-0151
[41] Slomiany, B.L. and Slomiany, A. (2011) Ghrelin suppression of Helicobacter pylori-induced gastric mucosal expression of iNOS is mediated through the inhibition of KKK-β activation by cNOS-dependent S-nitrosylation. Open Journal of Cell Biology, 1, 1-10. doi:10.4236/ojcb.2011.11001
[42] Reynaert, N.L., Ckless, K., Korn, S.H., et al. (2004) Nitric oxide represses inhibitory κΒ kinase through S-nitrosylation. Proceedings National Academy of Sciences of the USA, 101, 8945-8950. doi:10.1073/pnas.0400588101
[43] Marshall, H.E., Hess, D.T. and Stamler, J.S. (2004) S-nitrosylation: Physiological regulation of NF-κΒ. Proceedings of the National Academy of Sciences of the USA, 101, 8841-8842. doi:10.1073/pnas.0403034101
[44] Perkins, N.D. (2007) Integrating cell-signalling pathways with NF-κΒ and IKK function. Nature Review Molecular Cell Biology, 8, 49-62. doi:10.1038/nrm2083

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.