Modular Hydrogels for Drug Delivery


The development of novel drug delivery systems is an essential step toward controlled site-specific administration of therapeutics within the body. It is desirable for delivery vehicles to be introduced into the body through minimally invasive means and, these vehicles should be capable of releasing drug to their intended location at a controlled rate. Furthermore, it is desirable to develop drug delivery systems that are capable of in vivo to suffer degradation and to deliver the drug completely, avoiding the need to surgically remove the vehicle at the end of its useful lifetime. Hydrogels are of particular interest for drug delivery applications due to their ability to address these needs in addition to their good biocompatibility, tunable network structure to control the diffusion of drugs and, tunable affinity for drugs. However, hydrogels are also limited for drug delivery applications due to the often quick elution of drug from their highly swollen polymer matrices as well as the difficulty inherent in the injection of macroscopic hydrogels into the body. This paper presents an overview to the advances in hydrogels based drug delivery. Different types of hydrogels can be used for drug delivery to specific sites in the gastrointestinal tract ranging from the oral cavity to the colon. These novel systems exhibit a range of several peculiar properties which make them attractive as controlled drug release formulations. Moreover, such materials are biocompatible and can be formulated to give controlled, pulsed, and triggered drug release profiles in a variety of tissues.

Share and Cite:

S. Simões, A. Figueiras and F. Veiga, "Modular Hydrogels for Drug Delivery," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 185-199. doi: 10.4236/jbnb.2012.32025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. M. Gomes, H. Azevedo, P. Malafaya, S. Silva, J. Oli-veira, G. Silva, R. Sousa, J. Mano and R. Reis, “Natural Polymers in Tissue Engineering Applications,” In: C. V. Blitterswijk, Ed., Tissue Engineering, Academic Press, Waltham, 2008, pp. 146-191.
[2] B. D. Ratner and A. S. Hoffman, “Hydrogels for Medical and Related Applications,” ACS Publications, Washington DC, 1976.
[3] N. A. Peppas, “Hydrogels in Medicine and Pharmacy,” CRC Press, Boca Raton, 1986.
[4] N. A. Peppas and R. Langer, “New Challenges in Biomaterials,” Science, Vol. 263, No. 5154, 1994, pp. 1715-1720. doi:10.1126/science.8134835
[5] A. S. Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 3-12. doi:10.1016/S0169-409X(01)00239-3
[6] J. Jagur-Grodzinski, “Polymeric Gels and Hydrogels for Biomedical and Pharmaceutical Applications,” Polymers for Advanced Technologies, Vol. 21, No. 1, 2009, pp. 27- 47. doi:10.1002/pat.1504
[7] B. K. Nanjawade, F. V. Manvi and A.S. Manjappa, “In situ-Forming Hydrogels for Sustained Ophthalmic Drug Delivery,” Journal of Controlled Release, Vol. 122, No. 2, 2007, pp. 119-134. doi:10.1016/j.jconrel.2007.07.009
[8] L. Xinming, C. Yingde, A. W. Lloyd, S. V. Mikhalovsky, S. R. Sandeman, C. A. Howel and L. Liewen, “Polymeric Hydrogels for Novel Contact Lens-Based Ophthalmic Drug Delivery Systems: A Review,” Contact Lens & Anterior Eye, Vol. 31, No.2, 2008, pp. 57-64. doi:10.1016/j.clae.2007.09.002
[9] S. Brahim, D. Narinesingh and A. Guiseppi-Elie, “Polypyr-role-Hydrogel Composites for the Construction of Clinically Important Biosensors,” Biosensors and Bioelectronics, Vol. 17, No. 1-2, 2002, pp. 53-59. doi:10.1016/S0956-5663(01)00262-7
[10] N. B. Graham and M. E. McNeill, “Hydrogels for Controlled Drug Delivery,” Biomaterials, Vol. 5, No. 1, 1984, pp. 27-36. doi:10.1016/0142-9612(84)90063-2
[11] N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward and J. Zhang, “Physicochemical, Foundations and Structural Design of Hydrogels in Medicine and Biology,” Annual Review of Biomedical Engineering, Vol. 2, 2000, pp. 9-29. doi:10.1146/annurev.bioeng.2.1.9
[12] L. Chen, Z. Tian and Y. Du, “Synthesis and pH Sensitivity of Carbox-ymethyl Chitosan-Based Polyampholyte Hydrogels for Protein Carrier Matrices,” Biomaterials, Vol. 25, No. 17, 2004, pp. 3725-3732. doi:10.1016/j.biomaterials.2003.09.100
[13] Q. Li, J. Wang, S. Shahani, D. D. N. Sun, B. Sharma, J. H. Elis-seeff and K. W. Leong, “Biodegradable and Photo-cros-slinkable Polyphosphoester Hydrogel,” Biomaterials, Vol. 27, No. 17, 2006, pp. 1027-1034. doi:10.1016/j.biomaterials.2005.07.019
[14] T. R. Hoare and D. S. Kohane, “Hydrogels in Drug Delivery: Progress and Challenges,” Polymer, Vol. 49, No. 8, 2008, pp. 1993-2007. doi:10.1016/j.polymer.2008.01.027
[15] R. Langer and J. P. Vacanti, “Tissue Engineering,” Science, Vol. 260, No. 5110, 1993, pp. 920-926. doi:10.1126/science.8493529
[16] J. L. Drury and D. J. Mooney, “Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications,” Biomaterials, Vol. 24, No. 24, 2003, pp. 4337-4351. doi:10.1016/S0142-9612(03)00340-5
[17] K. A. Davis and K. S. Anseth, “Controlled Release from Crosslinked Degradable Networks,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 19, No. 4-5, 2002, pp. 385-423. doi:10.1615/CritRevTherDrugCarrierSyst.v19.i45
[18] K. Y. Lee and S. H. Yuk, “Polymeric Protein Delivery Systems,” Progress in Polymer Science, Vol. 32, No. 7, 2007, pp. 669-697. doi:10.1016/j.progpolymsci.2007.04.001
[19] T. Coviello, P. Matricardi, C. Marianecci and F. Alhaique, “Poly-saccharide Hydrogels for Modified Release Formulations,” Journal of Controlled Release, Vol. 119, No. 1, 2007, pp. 5-24. doi:10.1016/j.jconrel.2007.01.004
[20] S. H. Jeong, K. M. Huh and K. Park, “Hydrogel Drug Delivery Systems, in Polymers in Drug Delivery,” CRC press, Boca Raton, 2006.
[21] K. R. Kamath and K. Park, “Biodegradable Hydrogels in Drug Delivery,” Advanced Drug Delivery Reviews, Vol. 11, No. 1-2, 1993, pp. 59-84. doi:10.1016/0169-409X(93)90027-2
[22] P. M. de la Torre, S. Torrado and S. Torrado, “Interpolymer Com-plexes of Poly(Acrylic Acid) and Chitosan: Influence of the Ionic Hydrogel-Forming Medium,” Biomaterials, Vol. 24, No. 8, 2003, pp. 1459-1468. doi:10.1016/S0142-9612(02)00541-0
[23] Y. Kumashiro, K. M. Huh, T. Ooya and N. Yui, “Modulatory Factors on Temperature-Synchronized Degradation of Dextran Grafted with Thermoresponsive Polymers and Their Hydrogels,” Biomacromolecules, Vol. 2, No. 3, 2001, pp. 874-879. doi:10.1021/bm015527y
[24] J. Kopecek and J. Yang, “Hydrogels as Smart Biomaterials,” Polymer International, Vol. 56, No. 9, 2007, pp. 1078-1098. doi:10.1002/pi.2253
[25] S. A. Lapidot, J. Kost, K. H. J. Buschow, W. C. Robert, C. F. Merton, I. Bernard, J. K. Edward, M. Subhash and V. Patrick, “Hydrogels,” In: K. H. J. Buschow, et al., Eds., Encyclopedia of Materials: Science and Technology, El- sevier, Oxford, 2001, pp. 3878- 3882.
[26] T. Tamar, K. Joseph and A.L. Smadar, “Modeling Ionic Hydrogels Swelling: Characterization of the Non-Steady State,” Biotechnology and Bioengineering, Vol. 84, No. 1, 2003, pp. 20-28. doi:10.1002/bit.10736
[27] T. Traitel, Y. Cohen and J. Kost, “Characterization of Glucose-Sensitive Insulin Release Systems in Simulated in Vivo Conditions,” Bioma-terials, Vol. 21, No. 16, 2000, pp. 1679-1687. doi:10.1016/S0142-9612(00)00050-8
[28] K. Wang, J. Burban and E. Cussler, “Hydrogels as Sepa- ration Agents,” Responsive Gels: Volume Transitions II, Vol. 110, 1993, pp. 67-79. doi:10.1007/BFb0021129
[29] L. Brannon-Peppas and N. A. Peppas, “Dynamic and Equilibrium Swelling Behaviour of pH-Sensitive Hydrogels Containing 2-Hydroxyethyl Methacrylate,” Biomaterials, Vol. 11, No. 9, 1990, pp. 635-644. doi:10.1016/0142-9612(90)90021-H
[30] C. Jun, P. Haesun and P. Kinam, “Synthesis of Super-porous Hydrogels: Hydrogels with Fast Swelling and Superabsor-bent Properties,” Journal of Biomedical Materials Re-search A, Vol. 44, No. 1, 1999, pp. 53-62. doi:10.1002/(SICI)1097-4636(199901)44:1<53::AID-JBM6>3.0.CO;2-W
[31] P. Kofinas and R.E. Cohen, “Development of Methods for Quantitative Characterization of Network Morphology in Pharmaceutical Hydrogels,” Biomaterials, Vol. 18, No. 20, 1997, pp. 1361-1369. doi:10.1016/S0142-9612(97)00077-X
[32] K. Pathma-nathan and G. P. Johari, “Relaxation and Crys- tallization of Water in a Hydrogel,” Journal of Chemical Society Faraday Transactions, Vol. 90, No. 8, 1994, pp. 1143-1148. doi:10.1039/FT9949001143
[33] H. Park, K. Park and W. S. W. Shalaby, “Biodegradable Hydrogels for Drug Delivery,” CRC Press, Boca Raton, 1993.
[34] A.M. Lowman and N. A. Peppas, “Analysis of the Complexation/Decomplexation Phenomena in Graft Copoly- mer Networks,” Macromolecules, Vol. 30, No.17, 1997, pp. 4959-4965. doi:10.1021/ma970399k
[35] B. Jeong, Y.K. Choi, Y. H. Bae, G. Zentner and S. W. Kim, “New Biodegradable Polymers for Injectable Drug Delivery Systems,” Journal of Controlled Release, Vol. 62, No, 1-2, 1999, pp. 109-114. doi:10.1016/S0168-3659(99)00061-9
[36] N.A. Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, Vol. 6, No. 3, 1991, pp. 241-246. doi:10.1177/088391159100600303
[37] A. R. Khare and N. A. Peppas, “Swelling/Deswelling of Anionic Copolymer Gels,” Biomaterials, Vol. 16, No. 7, 1995, pp. 559-567. doi:10.1016/0142-9612(95)91130-Q
[38] N. A. Peppas, A. R. Khare, “Preparation, Structure and Diffu-sional Behavior of Hydrogels in Controlled Release,” Advanced Drug Delivery Reviews, Vol. 11, No. 1- 2, 1993, pp. 1-35. doi:10.1016/0169-409X(93)90025-Y
[39] S. Amin, S. Rajabnezhad and K. Kohli, “Hydrogels as Potential Drug Delivery Systems,” Scientific Research and Essays, Vol. 4, No. 11, 2009, pp. 1175-1183.
[40] C. C. Lin and A. T. Metters, “Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling,” Advanced Drug Delivery Reviews, Vol. 58, No. 12-13, 2006, pp. 1379-1408. doi:10.1016/j.addr.2006.09.004
[41] W. E. Hennink and C. F. van Nostrum, “Novel Crosslink- ing Methods to Design Hydrogels,” Advanced Drug De- livery Reviews, Vol. 54, No. 1, 2002, pp. 13-36. doi:10.1016/S0169-409X(01)00240-X
[42] A. M. Low-man and N. A. Peppas, “Encyclopedia of Con- trolled Drug Delivery,” John Wiley & Sons, Hoboken, 1999.
[43] S. W. Kim, Y. H. Bae, “Stimuli-Modulated Delivery Systems,” In: G. L.Amidon, P. I. Lee and E. M. Topp, Eds., Transport Processes in Pharmaceutical Systems, Marcel Dekker, New York, 2000, pp. 547-573.
[44] A. Gutowska, J. S. Bark, I. Chan Kwon, Y. Han Bae, Y. Cha and S. Wan Kim, “Squeezing Hy-drogels for Controlled Oral Drug Delivery,” Journal of Controlled Release, Vol. 48, No. 2-3, 1997, pp. 141-148. doi:10.1016/S0168-3659(97)00041-2
[45] I. Y. Galaev, “Smart Polymers in Biotechnology and Medicine,” Russian Chemical Reviews, Vol. 64, No. 5, 1995, pp. 471-489. doi:10.1070/RC1995v064n05ABEH000161
[46] I. Y. Galaev and B. Mattiasson, “Smart’ Polymers and What They Could Do in Biotechnology and Medicine,” Trends in Biotechnology, Vol. 17, No. 8, 1999, pp. 335- 340. doi:10.1016/S0167-7799(99)01345-1
[47] P .S. Stayton, M. E. H. El-Sayed, N. Murthy, V. Bulmus, C. Lackey, C. Cheung and A. S. Hoffman, “Smart Delivery Systems for Biomolecular Therapeutics,” Orthodon- tics and Craniofacial Research, Vol. 8, No. 3, 2005, pp. 219-225. doi:10.1111/j.1601-6343.2005.00336.x
[48] Y. Qiu and K. Park, “Environment-Sensitive Hydrogels for Drug De-livery,” Advanced Drug Delivery Reviews, Vol. 53, No. 3, 2001, pp. 321-339. doi:10.1016/S0169-409X(01)00203-4
[49] J. C. Ruiz, C. Alvarez-Lorenzo, P. Taboada, G. Burillo, E. Bucio, K. de Prijck, H. J. Nelis, T. Coenye and A. Concheiro, “Poly-propylene Grafted with Smart Polymers (PNI-PAAm/PAAc) for Loading and Controlled Release of Vancomycin,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 70, No. 2, 2008, pp. 467-477. doi:10.1016/j.ejpb.2008.05.020
[50] N. A. Peppas, P. Bures, W. Leobandung and H. Ichikawa, “Hydrogels in Pharmaceutical Formulations,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 50, No. 1, 2000, pp. 27-46. doi:10.1016/S0939-6411(00)00090-4
[51] B. Erman and P. J. Flory, “Critical Phenomena and Transitions in Swollen Polymer Networks and in Linear Macromolecules,” Macromolecules, Vol. 19, No. 9, 1986, pp. 2342-2353. doi:10.1021/ma00163a003
[52] J. Ma, X. Liu, Z. Yang and Z. Tong, “A pH-Sensitive Hydrogel with Hydrophobic Association for Controlled Release of Poorly Water-Soluble Drugs,” Journal of Macromolecular Science: Pure and Applied Chemistry, Vol. 46, No. 8, 2009, pp. 816-820. doi:10.1080/10601320903004707
[53] C. H. Alarcon, S. Pennadam and C. Alexander, “Stimuli Responsive Poly-mers for Biomedical Applications,” Chemical Society Reviews, Vol. 34, No.3, 2005, pp. 276-285. doi:10.1039/B406727D
[54] A. S. Hoffman and P. S. Stayton, “Conjugates of Stimuli- Responsive Polymers and Proteins,” Progress in Polymer Science, Vol. 32, No. 8-9, 2007, pp. 922-932. doi:10.1016/j.progpolymsci.2007.05.005
[55] R. J. Mart, R. D. Osborne, M. M. Stevens and R. V. Ulijn, “Peptide-Based Stimuli-Responsive Biomaterials,” Soft Matter, Vol. 2, No. 10, 2006, pp. 822-835. doi:10.1039/B607706D
[56] P. Ali and B. Shahram, “Synthesis and Evaluation of pH and Thermosensitive Pectin-Based Superabsorbent Hy- drogel for Oral Drug Delivery Systems,” Starch-St?rke, Vol. 61, No. 3-4, 2009, pp. 161-172. doi:10.1002/star.200800063
[57] J. Chen and K. Park, “Synthesis and Characterization of Superporous Hydrogel Composites,” Journal of Controlled Release, Vol. 65, No. 1-2, 2000, pp. 73-82. doi:10.1016/S0168-3659(99)00238-2
[58] J. Zhang, K. Yuan, Y. P. Wang, S. J. Gu and S. T. Zhang, “Preparation and Properties of Polyacrylate/Bentonite Superabsorbent Hybrid via Intercalated Polymerization,” Materials Letters, Vol. 61, No. 2, 2007, pp. 316-320. doi:10.1016/j.matlet.2006.04.055
[59] B. G. Geest, C. Déjugnat, G. B. Sukhorukov, K. Braeck-mans, S. C. De Smedt and J. Demeester, “Self-Rupturing Microcapsules,” Advanced Materials, Vol. 17, No. 19, 2005, pp. 2357-2361. doi:10.1002/adma.200401951
[60] D. Yonghui, W. Changchun, S. Xizhong, Y. Wuli, J. Lan, G. Hong and F. Shoukuan, “Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells,” Chemistry European Journal, Vol. 11, No. 20, 2005, pp. 6006-6013. doi:10.1002/chem.200500605
[61] J. D. Ehrick, S. K. Deo, T. W. Browning, L. G. Bachas, M. J. Madou and S. Daunert, “Genetically Engineered Protein in Hydrogels Tailors Stimuli-Responsive Characteristics,” Nature Materials, Vol. 4, No. 4, 2005, pp. 298-302.
[62] J. Gu, F. Xia, Y. Wu, X. Qu, Z. Yang and L. Jiang, “Programmable Delivery of Hydrophilic Drug Using Dually Responsive Hydrogel Cages,” Journal of Controlled Release, Vol. 117, No. 3, 2007, pp. 396-402. doi:10.1016/j.jconrel.2006.11.029
[63] K. S. V. K. Rao, B. V. K. Naidu, M. C. S. Subha, M. Sairam and T. M. Aminabhavi, “Novel Chitosan-Based pH-Sensitive Interpenetrating Network Microgels for the Controlled Release of Cefadroxil,” Carbohydrate Polymers, Vol. 66, No. 3, 2006, pp. 333-344. doi:10.1016/j.carbpol.2006.03.025
[64] K. S. Soppimath, A. R. Kulkarni and T. M. Aminabhavi, “Chemically Modified Polyacrylamide-g-Guar Gum-Based Crosslinked Anionic Microgels as pH-Sensitive Drug Delivery Systems: Preparation and Characterization,” Journal of Controlled Release, Vol. 75, No. 3, 2001, pp. 331-345. doi:10.1016/S0168-3659(01)00404-7
[65] G. Tae, M. Scatena, P. S. Stayton and A. S. Hoffman, “PEG-Cross-Linked Heparin Is an Affinity Hydrogel for Sustained Release of Vascular Endothelial Growth Factor,” Journal of Biomaterials Science Polymer Edition, Vol. 17, No. 1-2, 2006, pp. 187-197. doi:10.1163/156856206774879090
[66] P. D. Thornton, R. J. Mart and R. V. Ulijn, “Enzyme- Responsive Polymer Hydrogel Particles for Controlled Release,” Advanced Materials, Vol. 19, No. 9, 2007, pp. 1252-1256. doi:10.1002/adma.200601784
[67] I. R. Wheeldon, S. Calabrese Barton and S. Banta, “Bio- active Proteinaceous Hydrogels from Designed Bifunc- tional Building Blocks,” Biomacromolecules, Vol. 8, No. 10, 2007, pp. 2990-2994. doi:10.1021/bm700858p
[68] K. C. Wood, H. F. Chuang, R. D. Batten, D. M. Lynn and P. T. Hammond, “Controlling Interlayer Diffusion to Achieve Sustained, Multiagent Delivery from Layer-By- Layer Thin Films,” Proceedings of the National Academy of Sciences, Vol. 103, No. 27, 2006, pp. 10207-10212. doi:10.1073/pnas.0602884103
[69] J. Zhou, G. Wang, L. Zou, L. Tang, M. Marquez and Z. Hu, “Viscoelastic Be-havior and in Vivo Release Study of Microgel Dispersions with Inverse Thermoreversible Gelation,” Biomacromo-lecules, Vol. 9, No. 1, 2008, pp. 142-148. doi:10.1021/bm700918d
[70] N. Singh, A.W. Bridges, A. J. Garcia and L. A. Lyon, “Covalent Tethering of Func-tional Microgel Films onto Poly(Ethylene Terephthalate) Surfaces,” Biomacromolecules, Vol. 8, No. 10, 2007, pp. 3271-3275. doi:10.1021/bm700516v
[71] C. M. Nolan, C. D. Reyes, J. D. Debord, A. J. Garcia and L. A. Lyon, “Phase Transition Behavior, Protein Adsorption, and Cell Adhesion Resistance of Poly(Ethylene Glycol) Cross-Linked Microgel Particles,” Biomacromolecules, Vol. 6, No. 4, 2005, pp. 2032-2039. doi:10.1021/bm0500087
[72] D. Gan and L. A. Lyon, “Synthesis and Protein Adsorp- tion Resistance of PEG-Modified Poly(N-isopropylacry- lamide) Core/Shell Microgels,” Macromolecules, Vol. 35, No. 26, 2002, pp. 9634-9639. doi:10.1021/ma021186k
[73] P. Kim, D. Kim, B. Kim, S. Choi, S. Lee, A. Khadem- hosseini, R. Langer and K.Y. Suh, “Fabrication of Nanostructures of Polyethylene Glycol for Applications to Pro- tein Adsorption and Cell Adhesion,” Nanotechnology, Vol. 16, No. 10, 2005, pp. 2420-2426. doi:10.1088/0957-4484/16/10/072
[74] H. Cong, A. Revzin and T. Pan, “Non-Adhesive PEG Hydrogel Nano-structures for Self-Assembly of Highly Ordered Colloids,” Nanotechnology, Vol. 20, 2009, Arti- cle ID: 075307. doi:10.1088/0957-4484/20/7/075307
[75] K. S. Jeong, P. S. Jun, L. S. Min, L. Y. Moo, K. H. Chan and I. K. Sun, “Electroactive Characteristics of Interpenetrating Polymer Network Hydrogels Composed of Poly(Vinyl Alcohol) and Poly(N-Isopropylacrylamide),” Journal of Applied Polymer Science, Vol. 89, No. 4, 2003, pp. 890-894. doi:10.1002/app.12331
[76] J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E. I. Kauppinen and H. Tenhu, “Synthesis of Gold Nanoparticles Grafted with a Thermoresponsive Polymer by Surface-Induced Reversible-Addition-Fragmentation Chain-Transfer Polymerization,” Langmuir, Vol. 19, No. 8, 2003, pp. 3499-3504. doi:10.1021/la026872r
[77] M. Yamato, M. Utsumi, A. Kushida, C. Konno, A. Kikuchi and T. Okano, “Thermo-Responsive Culture Dishes Allow the Intact Harvest of Multilayered Keratinocyte Sheets without Dispase by Reducing Temperature,” Tis- sue Engineering, Vol. 7, No. 4, 2001, pp. 473-480. doi:10.1089/10763270152436517
[78] K. S. Anseth, A. T. Metters, S. J. Bryant, P. J. Martens, J. H. Elisseeff, C. N. Bowman, “In Situ Forming Degrad- able Networks and Their Application in Tissue Engineer- ing and Drug Delivery,” Journal of Controlled Release, Vol. 78, No. 1-3, 2002, pp. 199-209. doi:10.1016/S0168-3659(01)00500-4
[79] C. Chung and J. A. Burdick, “Engineering Cartilage Tis- sue,” Advanced Drug Delivery Reviews, Vol. 60, No. 2, 2008, pp. 243-262. doi:10.1016/j.addr.2007.08.027
[80] D. Y. Fozdar, W. Zhang, M. Palard, C. W. P. Jr and S. Chen, “Flash Imprint Lithography Using a Mask Aligner: A Method for Printing Nanostructures in Photosensitive Hydrogels,” Nanotechnology, Vol. 19, No. 21, 2008, pp. 215-303. doi:10.1088/0957-4484/19/21/215303
[81] K. Y. Suh, M. C. Park and P. Kim, “Capillary Force Lithography: A Versatile Tool for Structured Biomaterials Interface towards Cell and Tissue Engineering”, Advanced Functional Materials, Vol. 19, No. 17, 2009, pp. 2699-2712. doi:10.1002/adfm.200900771
[82] M. P. Lutolf and J. A. Hubbell, “Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morpho-genesis in Tissue Engineering,” Nature Biotechnology, Vol. 23, No. 1, 2005, pp. 47-55.
[83] B. K. Mann, “Biologic Gels in Tissue Engineering,” Clinics in Plastic Surgery, Vol. 30, No. 4, 2003, pp. 601-609. doi:10.1016/S0094-1298(03)00078-6
[84] C. Schwall and I. Banerjee, “Micro- and Nanoscale Hydrogel Systems for Drug Delivery and Tissue Engineering,” Materials, Vol. 2, No. 2, 2009, pp. 577-612. doi:10.3390/ma2020577
[85] M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff and A. J. Domb, “Polymer Carriers for Drug Delivery in Tissue Engineering,” Advanced Drug Delivery Reviews, Vol. 59, No. 4-5, 2007, pp. 187-206. doi:10.1016/j.addr.2007.04.001
[86] H. J. Wang, L. Di, Q. S. Ren and J. Y. Wang, “Applications and Degradation of Proteins Used as Tissue Engineering Materials,” Materials, Vol. 2, No. 2, 2009, pp. 613-635. doi:10.3390/ma2020613
[87] C. Weinand, I. Pomerant-seva, C. M. Neville, R. Gupta, E. Weinberg, I. Madisch, F. Shapiro, H. Abukawa, M. J. Troulis and J. P. Vacanti, “Hydrogel-β-TCP Scaffolds and Stem Cells for Tissue Engineering Bone,” Bone, Vol. 38, No. 4, 2006, pp. 555-563. doi:10.1016/j.bone.2005.10.016
[88] S. X. Zheng, A. Shama, L. Yanchun and D. P. Glenn, “Synthesis and Evaluation of Injectable, in Situ Cross-linkable Synthetic Extracellular Matrices for Tissue En- gineering,” Journal of Biomedical Materials Research A, Vol. 79A, No. 4, 2006, pp. 902-912. doi:10.1002/jbm.a.30831
[89] J. Xinqiao and L. K. Kristi, “Hybrid Multicomponent Hydrogels for Tissue Engineering,” Macromolecular Bioscience, Vol. 9, No. 2, 2009, pp. 140-156. doi:10.1002/mabi.200800284
[90] L. Serra, J. Doménech and N. A. Peppas, “Engineering Design and Molecular Dynamics of Mucoadhesive Drug Delivery Systems as Targeting Agents,” European Journal of Pharmaceutics and Biopharmaceutics , Vol. 71, No. 3, 2009, pp. 519-528. doi:10.1016/j.ejpb.2008.09.022
[91] G. P. Andrews, T. P. Laverty and D. S. Jones, “Mucoadhesive Polymeric Platforms for Controlled Drug Delivery,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 71, No. 3, 2009, pp. 505-518. doi:10.1016/j.ejpb.2008.09.028
[92] N. A. Peppas and J. J. Sahlin, “Hydrogels as Mucoadhesive and Bioadhesive Materials: A Review,” Biomaterials, Vol. 17, No. 16, 1996, pp. 1553-1561. doi:10.1016/0142-9612(95)00307-X
[93] Y. H. Bae, T. Okano and S. W. Kim, “‘On-Off’ Thermo-control of Solute Transport. I. Temperature Dependence of Swelling of N-Isopropylacrylamide Networks Modified with Hy-drophobic Components in Water,” Pharmaceutical Research, Vol. 8, No. 4, 1991, pp. 531-537. doi:10.1023/A:1015871732706
[94] Y. H. Bae, T. Okano and S. W. Kirn, “‘On-Off’ Thermo- control of So-lute Transport. II. Solute Release from Ther- mosensitive Hydrogels,” Pharmaceutical Research, Vol. 8, No. 5, 1991, pp. 624-628. doi:10.1023/A:1015860824953
[95] B. Jeong, S. W. Kim and Y. H. Bae, “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 37-51. doi:10.1016/S0169-409X(01)00242-3
[96] E. Ruel-Gariépy and J. C. Leroux, “In Situ-Forming Hydrogels—Review of Temperature-Sensitive Systems,” Euro- pean Journal of Pharmaceutics and Biopharmaceutics, Vol. 58, No. 2, 2004, pp. 409-426. doi:10.1016/j.ejpb.2004.03.019
[97] X. Zhang and R. Zhuo, “Synthesis of Temperature-Sensitive Poly(N-Isopropylacrylamide) Hydrogel with Improved Surface Property,” Journal of Colloid and Interface Science, Vol. 223, No. 2, 2000, pp. 311-313. doi:10.1006/jcis.1999.6654
[98] C. Alvarez-Lorenzo, A. Concheiro, A. S. Dubovik, N. V. Grinberg, T. V. Burova and V. Y. Grinberg, “Temperature-Sensitive Chitosan-Poly(N-Isopropylacrylamide) In-Terpenetrated Net-works with Enhanced Loading Capacity and Controlled Release Properties,” Journal of Controlled Release, Vol. 102, No. 3, 2005, pp. 629-641. doi:10.1016/j.jconrel.2004.10.021
[99] M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi and T. Okano, “Temperature-Responsive Cell Culture Surfaces for Regenerative Medicine with Cell Sheet Engineering,” Progress in Polymer Science, Vol. 32, No. 8-9, 2007, pp. 1123-1133. doi:10.1016/j.progpolymsci.2007.06.002
[100] L. Pérez-Alvarez, V. S. Martínez, E. Hernáez and I. Katime, “Novel pH- and Temperature-Responsive Methacrylamide Microgels,” Macromolecular Chemistry and Physics, Vol. 210, No. 13-14, 2009, pp. 1120-1126. doi:10.1002/macp.200900058
[101] I. C. Kwon, Y. H. Bae, T. Okano and S. W. Kim, “Drug Release from Electric Current Sensitive Polymers,” Journal of Controlled Release, Vol. 17, No. 2, 1991, pp. 149- 153. doi:10.1016/0168-3659(91)90054-H
[102] K. Sawahata, M. Hara, H. Yasunaga and Y. Osada, “Electrically Controlled Drug Delivery System Using Polye- lectrolyte Gels,” Journal of Controlled Release, Vol. 14, No. 3, 1990, pp. 253-262. doi:10.1016/0168-3659(90)90165-P
[103] H. Li, R. Luo and K. Y. Lam, “Modeling of Ionic Transport in Electric-Stimulus-Responsive Hydrogels,” Journal of Membrane Science, Vol. 289, No. 1-2, 2007, pp. 284- 296. doi:10.1016/j.memsci.2006.12.011
[104] H. Li, “Kinetics of Smart Hydrogels Responding to Elec- tric Field: A Transient Deformation Analysis,” International Journal of Solids and Structures, Vol. 46, No. 6, 2009, pp. 1326-1333. doi:10.1016/j.ijsolstr.2008.11.001
[105] A. Mamada, T. Tanaka, D. Kungwatchakun and M. Irie, “Photoinduced Phase Transition of Gels,” Macromole- cules, Vol. 23, No. 5, 1990, pp. 1517-1519. doi:10.1021/ma00207a046
[106] F. M. Andreopoulos, E. J. Beckman and A. J. Russell, “Light-Induced Tailoring of PEG-Hydrogel Properties,” Biomaterials, Vol. 19, No. 15, 1998, pp. 1343-1352. doi:10.1016/S0142-9612(97)00219-6
[107] C. Alvarez-Lorenzo, S. Deshmukh, L. Bromberg, T. A. Hatton, I. Sandez-Macho, and A. Concheiro, “Temperature- and Light-Responsive Blends of Pluronic F127 and poly(N,N-Dimethylacrylamide-co-Methacryloyloxyazobenzene),” Langmuir, Vol. 23, No. 23, 2007, pp. 11475- 11481. doi:10.1021/la7019654
[108] C. Alvarez-Lorenzo, L. Bromberg and A. Concheiro, “Light-Sensitive Intelligent Drug Delivery Systems,” Photochemistry and Photobiology, Vol. 85, No. 4, 2009, pp. 848-860. doi:10.1111/j.1751-1097.2008.00530.x
[109] J. Kost, J. Wolfrum and R. Langer, “Magnetically Enhanced Insulin Release in Diabetic Rats,” Journal of Biomedical Materials Research A, Vol. 21, No. 12, 1987, pp. 1367-1373. doi:10.1002/jbm.820211202
[110] L. L. Lao and R. V. Ramanujan, “Magnetic and Hydrogel Composite Materials for Hyperthermia Applications,” Journal of Materials Science: Materials in Medicine, Vol. 15, No. 10, 2004, pp. 1061-1064. doi:10.1023/B:JMSM.0000046386.78633.e5
[111] K. L. Ang, S. Venkatraman and R.V. Ramanujan, “Magnetic PNIPA Hydrogels for Hyperthermia Applications in Cancer Therapy,” Materials Science and Engineering C, Vol. 27, No. 3, 2007, pp. 347-351. doi:10.1016/j.msec.2006.05.027
[112] R. Ramanujan, K. Ang and S. Venkatraman, “Magnet- PNIPA Hydrogels for Bioengineering Applications,” Journal of Materials Science, Vol. 44, No. 5, 2009, pp. 1381- 1387. doi:10.1007/s10853-006-1064-x
[113] N. S. Satarkar and J. Z. Hilt, “Magnetic Hydrogel Nano- composites for Remote Controlled Pulsatile Drug Release,” Journal of Controlled Release, Vol. 130, No. 3, 2008, pp. 246-251. doi:10.1016/j.jconrel.2008.06.008
[114] M. Namdeo, S. K. Bajpai and S. Kakkar, “Preparation of a Magnetic-Field-Sensitive Hydrogel and Preliminary Study of Its Drug Release Behavior,” Journal of Biomaterials Science Polymer Edition, Vol. 20, No. 12, 2009, pp. 1747-1761. doi:10.1163/156856208X386372
[115] L. C. Sederel, L. Does, B. J. Euverman, A. Bantjes, C. Kluft and H. J. M. Kempen, “Hydrogels by Irradiation of a Synthetic Heparinoid Polyelectrolyte,” Biomaterials, Vol. 4, No. 1, 1983, pp. 3-8. doi:10.1016/0142-9612(83)90061-3
[116] I. Lavon and J. Kost, “Mass Transport Enhancement by Ultrasound in Non-Degradable Polymeric Controlled Release Systems,” Journal of Controlled Release, Vol. 54, No. 1, 1998, pp. 1-7. doi:10.1016/S0168-3659(97)00112-0
[117] M. H. Casi-miro, J. P. Leal and M. H. Gil, “Characterisa- tion of Gamma Irradiated Chitosan/pHEMA Membranes for Biomedical Purposes,” Nuclear Instruments and Meth- ods in Physics Research B, Vol. 236, No. 1-4, 2005, pp. 482-487. doi:10.1016/j.nimb.2005.04.023
[118] H. Zhang, H. Xia, J. Wang and Y. Li, “High Intensity Focused Ul-trasound-Responsive Release Behavior of PLA-b-PEG Copolymer Micelles,” Journal of Controlled Release, Vol. 139, No. 1, 2009, pp. 31-39. doi:10.1016/j.jconrel.2009.05.037
[119] J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas and R. Gurny, “Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications,” European Journal of Pharmaceutics and Bio-pharmaceutics, Vol. 57, No. 1, 2004, pp. 19- 34. doi:10.1016/S0939-6411(03)00161-9
[120] M. Karbarz, W. Hyka and Z. Stojek, “Swelling Ratio Driven Changes of Probe Concentration in pH- and Ionic Strength-Sensitive Poly(Acrylic Acid) Hydrogels,” Elec- trochemistry Communications, Vol. 11, No. 6, 2009, pp. 1217-1220. doi:10.1016/j.elecom.2009.04.005
[121] H. Li and Y. K. Yew, “Simulation of Soft Smart Hydrogels Responsive to pH Stimulus: Ionic Strength Effect and Case studies,” Materials Science and Engineering C, Vol. 29, No. 7, 2009, pp. 2261-2269. doi:10.1016/j.msec.2009.05.011
[122] L. Brannon-Peppas and N. A. Peppas, “Equilibrium Swell- ing Behavior of pH-Sensitive Hydrogels,” Chemical Engineering Science, Vol. 46, No. 3, 1991, pp. 715-722. doi:10.1016/0009-2509(91)80177-Z
[123] E. O. Akala, P. Kopecková and J. Kopecek, “Novel pH- Sensitive Hy-drogels with Adjustable Swelling Kinetics,” Biomaterials, Vol. 19, No. 11-12, 1998, pp. 1037-1047. doi:10.1016/S0142-9612(98)00023-4
[124] M. Torres-Lugo, M. García, R. Record and N. A. Peppas, “pH-Sensitive Hydrogels as Gastrointestinal Tract Absorption Enhancers: Transport Mechanisms of Salmon Calcitonin and Other Model Molecules Using the Caco-2 Cell Model,” Biotechnology Progress, Vol. 18, No. 3, 2002, pp. 612-616. doi:10.1021/bp0101379
[125] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt and H. J. Adler, “Review on Hydrogel-Based pH Sensors and Microsensors,” Sensors, Vol. 8, No. 1, 2008, pp. 561- 581. doi:10.3390/s8010561
[126] H. He, X. Cao and L. J. Lee, “Design of a Novel Hydrogel-Based Intelligent System for Controlled Drug Release,” Journal of Controlled Release, Vol. 95, No. 3, 2004, pp. 391-402. doi:10.1016/j.jconrel.2003.12.004
[127] J. M. Varghese, Y. A. Ismail, C. K. Lee, K. M. Shin, M. K. Shin, S. I. Kim, I. So and S. J. Kim, “Thermoresponsive Hydrogels Based on Poly(N-Isopropylacrylamide) /Chondroitin Sulfate,” Sensors and Actuators B Chemical, Vol. 135, No. 1, 2008, pp. 336-341. doi:10.1016/j.snb.2008.09.001
[128] T. Miyata, T. Ura-gami and K. Nakamae, “Biomolecule- Sensitive Hydro-gels,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 79-98. doi:10.1016/S0169-409X(01)00241-1
[129] R. Zhang, M. Tang, A. Bowyer, R. Eisenthal and J. Hubble, “Synthesis and Characterization of a D-Glucose Sensitive Hydrogel Based on CM-Dextran and Concanavalin A,” Reactive and Functional Polymers, Vol. 66, No. 7, 2006, pp. 757-767. doi:10.1016/j.reactfunctpolym.2005.11.003
[130] M. Goldraich and J. Kost, “Glucose-Sensitive Polymeric Matrices for Controlled Drug Delivery,” Clinical Materials, Vol. 13, No. 1-4, 1993, pp. 135-142. doi:10.1016/0267-6605(93)90100-L
[131] J. J. Kim and K. Park, “Modulated Insulin Delivery from Glucose-Sensitive Hydrogel Dosage Forms,” Journal of Controlled Release, Vol. 77, No. 1-2, 2001, pp. 39-47. doi:10.1016/S0168-3659(01)00447-3
[132] R. Luo and H. Li, “Simulation Analysis of Effect of Ionic Strength on Physiochemical and Mechanical Characteristics of Glucose-Sensitive Hydrogels,” Journal of Electro-analytical Chemistry, Vol. 635, No. 2, 2009, pp. 83-92. doi:10.1016/j.jelechem.2009.08.009
[133] Y. J. Kim, S. Choi, J. J. Koh, M. Lee, K. S. Ko and S. W. Kim, “Controlled Release of Insulin from Injectable Biodegradable Triblock Copolymer,” Pharmaceutical Re- search, Vol. 18, No. 4, 2001, pp. 548-550. doi:10.1023/A:1011074915438
[134] T. Miyata, N. Asami and T. Uragami, “A reversibly Antigen-Responsive Hydrogel,” Nature, Vol. 399, No. 6738, 1999, pp. 766-769.
[135] I. Sch?ll, G. Boltz-Nitulescu and E. Jensen-Jarolim, “Review of Novel Particulate Antigen Delivery Systems with Special Focus on Treatment of Type I Allergy,” Journal of Controlled Release, Vol. 104, No. 1, 2005, pp. 1-27. doi:10.1016/j.jconrel.2004.12.020
[136] A. K. Bajpai, S. K. Shukla, S. Bhanu and S. Kankane, “Responsive Polymers in Controlled Drug Delivery,” Progress in Polymer Science, Vol. 33, No. 11, 2008, pp. 1088-1118. doi:10.1016/j.progpolymsci.2008.07.005
[137] N. Ka-shyap, N. Kumar and M. N. V. Kumar, “Hydrogels for Pharmaceutical and Biomedical Applications,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 22, No. 2, 2005, pp. 107-150. doi:10.1615/CritRevTherDrugCarrierSyst.v22.i2.10
[138] A. Kikuchi and T. Okano, “Pulsatile Drug Release Control Using Hydrogels,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 53-77. doi:10.1016/S0169-409X(01)00243-5
[139] R. R. Burnette, “Theory of Mass Transfer”, In: J. R. Robinson, V. H. L. Lee, Eds., Controlled Drug Delivery: Fundamentals and Applications, Marcel Dekker, New York, 1987, pp. 95-138.
[140] B. Amsden, “Solute Diffusion within Hydrogels. Mechannisms and Models,” Macromolecules, Vol. 31, No. 23, 1998, pp. 8382-8395. doi:10.1021/ma980765f
[141] J. Siepmann and N.A. Peppas, “Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC),” Advanced Drug Delivery Reviews, Vol. 48, No. 2-3, 2001, pp. 139-157. doi:10.1016/S0169-409X(01)00112-0
[142] R. Bettini, P. Colombo, G. Massimo, P. L. Catellani and T. Vitali, “Swelling and Drug Release in Hydrogel Matrices: Polymer Viscosity and Matrix Porosity Effects,” European Journal of Pharmaceutical Sciences, Vol. 2, No. 3, 1994, pp. 213-219. doi:10.1016/0928-0987(94)90025-6
[143] P. L. Ritger and N. A. Peppas, “A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cy-linders or Discs,” Journal of Controlled Release, Vol. 5, No. 1 1987, pp. 23-36. doi:10.1016/0168-3659(87)90034-4
[144] N. A. Peppas, “Analysis of Fickian and non-Fickian Drug Release from Polymers,” Pharmaceutica Acta Helvetiae, Vol. 60, No. 4, 1985, pp. 110-111.
[145] D. G. Kanjickal and S.T. Lopina, “Modeling of Drug Release from Polymeric Delivery Systems—A Review,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 21, No. 5, 2004, pp. 345-386. doi:10.1615/CritRevTherDrugCarrierSyst.v21.i5.10
[146] T. Nagai and Y. Machida, “Buccal Delivery Systems Us-ing Hydrogels,” Advanced Drug Delivery Reviews, Vol. 11, No. 1-2, 1993, pp. 179-191. doi:10.1016/0169-409X(93)90032-Y
[147] M. M. Veillard, M. A. Longer, T. W. Martens and J. R. Robinson, “Preliminary Studies of Oral Mucosal Delivery of Peptide Drugs,” Journal of Controlled Release, Vol. 6, No. 1, 1987, pp. 123-131. doi:10.1016/0168-3659(87)90070-8
[148] M. J. Rathbone and I. G. Tucker, “Mechanisms, Barriers and Pathways of Oral Mucosal Drug Permeation,” Advanced Drug Delivery Reviews, Vol. 12, No. 1-2, 1993, pp. 41-60. doi:10.1016/0169-409X(93)90040-B
[149] R. Anders and H. P. Merkle, “Evaluation of Laminated Muco-Adhesive Patches for Buccal Drug Delivery,” International Journal of Pharmaceutics, Vol. 49, No. 3, 1989, pp. 231-240. doi:10.1016/0378-5173(89)90347-5
[150] J. D. Smart, “Drug Delivery Using Buccal-Adhesive Systems,” Advanced Drug Delivery Reviews, Vol. 11, No. 3, 1993, pp. 253-270. doi:10.1016/0169-409X(93)90012-S
[151] C. A. L. Bourlais, L. Treupel-Acar, C. T. Rhodes, P. A. Sado and R. Leverge, “New Ophthalmic Drug Delivery Sys-tems,” Drug Development and Industrial Pharmacy, Vol. 21, No. 1, 1995, pp. 19-59.
[152] H. W. Hui and J. R. Robinson, “Ocular Delivery of Pro- gesterone Using a Bioadhesive Polymer,” International Journal of Phar-maceutics, Vol. 26, No. 3, 1985, pp. 203- 213. doi:10.1016/0378-5173(85)90230-3
[153] S. Cohen, E. Lobel, A. Trevgoda and Y. Peled, “A Novel in Si-tu-Forming Ophthalmic Drug Delivery System from Al-ginates Undergoing Gelation in the Eye,” Journal of Controlled Release, Vol. 44, No. 2-3, 1997, pp. 201-208. doi:10.1016/S0168-3659(96)01523-4
[154] J. Carlfors, K. Edsman, R. Petersson and K. J?rnving, “Rheological Evaluation of Gelrite? in Situ Gels for Ophthalmic Use,” European Journal of Pharmaceutical Sciences, Vol. 6, No. 2, 1998, pp. 113-119. doi:10.1016/S0928-0987(97)00074-2
[155] P. Chetoni, G. Di Colo, M. Grandi, M. Morelli, M. F. Saettone and S. Darougar, “Silicone Rubber/Hydrogel Composite Oph-thalmic Inserts: Preparation and Preliminary in Vitro/in Vivo Evaluation,” European Journal of Pharmaceutical Sciences, Vol. 46, No. 1, 1998, pp. 125- 132. doi:10.1016/S0939-6411(97)00168-9
[156] S. Türker, E. Onur and Y. ózer, “Nasal Route and Drug Delivery Systems,” Pharmacy World & Science, Vol. 26, No. 3, 2004, pp. 137-142. doi:10.1023/B:PHAR.0000026823.82950.ff
[157] M. Zhou and M. D. Donovan, “Intranasal Mucociliary Clearance of Putative Bioadhesive Polymer Gels,” International Journal of Pharmaceutics, Vol. 135, No. 1-2, 1996, pp. 115-125. doi:10.1016/0378-5173(96)04441-9
[158] L. Illum, N. F. Farraj and S. S. Davis, “Chitosan as a Novel Nasal Delivery System for Peptide Drugs,” Pharmaceutical Research, Vol. 11, No. 8, 1994, pp. 1186-1189. doi:10.1023/A:1018901302450
[159] K. Nakamura, Y. Maitani, A. M. Lowman, K. Takayama, N. A. Peppas and T. Nagai, “Uptake and Release of Budesonide from Mucoadhesive, pH-Sensitive Copolymers and Their Application to Nasal Delivery,” Journal of Controlled Release, Vol. 61, No. 3, 1999, pp. 329-335. doi:10.1016/S0168-3659(99)00150-9
[160] Y. M. Sun, J. J. Huang, F. C. Lin and J. Y. Lai, “Composite Poly(2-Hydroxyethyl Methacrylate) Membranes as Rate-Controlling Barriers for Transdermal Applications,” Biomaterials, Vol. 18, No. 7, 1997, pp. 527-533. doi:10.1016/S0142-9612(96)00166-4
[161] J. C. Gayet and G. Fortier, “High Water Content BSA- PEG Hydrogel for Controlled Release Device: Evaluation of the Drug Release Properties,” Journal of Controlled Release, Vol. 38, No. 2-3, 1996, pp. 177-184. doi:10.1016/0168-3659(95)00118-2
[162] B. J. Bellhouse and M. A. F. Kendall, “Dermal Powder Ject Device,” In: M. J. Rathbone, J. Hadgraft and M. S. Roberts, Eds., Modified-Release Drug Delivery Technology, Marcel Dekker, New York, 2003.
[163] M. R. Prausnitz, S. Mi-tragotri and R. Langer, “Current Status and Future Potential of Transdermal Drug Delivery,” Nature Reviews Drug Discovery, Vol. 3, No. 2, 2004, pp. 111-124.
[164] S. Mehier-Humbert, R.H. Guy, “Physical Methods for Gene Transfer: Improving the Kinetics of Gene Delivery into Cells,” Advanced Drug Delivery Reviews, Vol. 57, No. 5, 2005, pp. 733-753.doi:10.1016/j.addr.2004.12.007.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.