Multifunctional Nanostructured Materials Applied in Controlled Radiopharmaceuticals Release

DOI: 10.4236/jbnb.2012.32022   PDF   HTML   XML   6,867 Downloads   9,626 Views   Citations


The metaiodobenzylguanidine (MIBG) radiopharmaceutical, an analogue of norepinephrine, has been used to diagnose certain diseases in the cardiovascular system when radiolabeled with 123I. This radiopharmaceutical can also be used to treat tumors, such as neuroblastomas and pheochromocytomas, when radiolabeled with 131I. Its clinical use is often accompanied by a slow intravenous administration, where a significant dose of radiation can directly affect workers in nuclear medicine services. To overcome this problem, the incorporation and controlled release of radiopharmaceuticals from the matrix of mesoporous systems based on silica, such as SBA-15 and hybrid [SBA-15/P(N-iPAAm)], can lead to a significant reduction in radiation doses received by workers. In the present study, silica matrices SBA-15 and hybrid [SBA-15/P(N-iPAAm)] containing the radiopharmaceutical MIBG were prepared and physicochemically characterized through FTIR, SEM, and small angle X-ray diffraction techniques. The release profiles of MIBG from SBA-15 and [SBA-15/P(N-iPAAm)] were studied in a simulated body fluid (SBF) to evaluate their potential application as vehicles for controlled releases. Furthermore, in vitro studies were performed to assess the cytotoxicity of matrices as compared to human lung fibroblast cells (MRC-5). The results revealed that the amount of MIBG incorporated within the studied matrices was indeed quite different, showing that only the hybrid [SBA-15/P(N-iPAAm)] system allowed for a more adequate release profile of MIGB. Taking all results into consideration, it can be concluded that the hybrid matrix [SBA-15/P(N-iPAAm)] can be considered a potential alternative material for the controlled release delivery of radio-pharmaceuticals.

Share and Cite:

R. Cristina de Sousa Azevedo, D. Crístian Ferreira Soares, R. Geraldo de Sousa and E. Martins Barros de Sousa, "Multifunctional Nanostructured Materials Applied in Controlled Radiopharmaceuticals Release," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 163-168. doi: 10.4236/jbnb.2012.32022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. W. Ha, J.-D. Lee, Y. Jang, N. Chung, J. Kwan, S.-J. Rim, Y.-J. Lee and S.-S. Kim, “123I-MIBG Myocardial Scintigraphy as a Noninvasive Screen for the Diagnosis of Coronary Artery Spasm,” Journal of Nuclear Cardiol- ogy, Vol. 5, No. 6, 1998, pp. 591-597. doi:10.1016/S1071-3581(98)90113-1
[2] H. Ogita, T. Shimonagata, M. Fukunami, et al., “Prognostic Significance of Cardiac 123I Metaiodobenzylguanidine Imaging for Mortality and Morbidity in Patients with Chronic Heart Failure: A Prospective Study,” Heart, Vol. 86, No. 6, 2001, 656-660. doi:10.1136/heart.86.6.656
[3] D. Agostini, I. Carrió and H. J. Verbene, “How to Use Myocardial 123I-MIBG Scintigraphy in Chronic Heart Failure,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 36, No. 4, 2009, 555-559. doi:10.1007/s00259-008-0976-x
[4] A. F. Jacobson, J. Lombard, G. Banerjee, et al., “123I-MIBG Scintigraphy to Predict Risk for Adverse Cardiac Outcomes in Heart Failure Patients: Design of Two Prospective Multicenter International Trials,” Journal of Nuclear Cardiology, Vol. 16, No. 1, 2009, 113-121. doi:10.1007/s12350-008-9008-2
[5] K. S. S. Bhati, M. M. Ismail, A. Sahdev, A. G. Rockall, K. Hogarth, A. Canizales, N. Avril, J. P. Monson, A. B. Grossman and R. H. Reznek, “123I-Metaiodobenzylguanidine (MIBG) Scintigraphy for the Detection of Adrenal and Extra-Adrenal Phaeochromocytomas: CT and MRI Correlation,” Clinical Endocrinology, Vol. 69, No. 2, 2008, 181-188. doi:10.1111/j.1365-2265.2008.03256.x
[6] B. Rose, K. K. Matthay, D. Price, J. Huberty, B. Klencke, J. A. Norton, et al., “High-Dose 131I Metaiodobenzyl-guanidine Therapy for 12 Patients with Malignant Pheochromocy-toma,” Cancer, Vol. 98, No. 2, 2003, 239-248. doi:10.1002/cncr.11518
[7] J. Rob, Mairs, Boyd, “Op-timizing MIBG Therapy of Neuroendocrine Tumors: Preclinical Evidence of Dose Maximization and Synergy,” Nuclear Medicine and Biology, Vol. 35, No. 1, 2008, 9-20. doi:10.1016/j.nucmedbio.2008.04.008
[8] J. B. Bomanji, W. Wong, M. N. A. Gaze, W. Cassoni, J. S. Waddington and P. J. Ell, “Treatment of Neuroendocrine Tumours in Adults with 131I-MIBG Therapy,” Clinical Oncology, Vol. 15, No. , 2003, 193-198. doi:10.1016/S0936-6555(02)00273-X
[9] F. Giammarile, A. Chiti, M. Lassmann, B. Brans and G. Flux, “EANM Procedure Guidelines for 131I-Meta-Iodo- benzylguanidine (131I-mIBG) Therapy,” European Jour- nal of Nuclear Medicine and Molecular Imaging, Vol. 35, No. 5, 2008, 1039-1047. doi:10.1007/s00259-008-0715-3
[10] L. Troncone and V. Rufini, “131I-MIBG Therapy of Neural Crest Tumours (Review),” Anticancer Research, Vol. 17, No. 3, 1997, 1823-1831.
[11] A. Taguchi and F. Schüth, “Ordered Mesoporous Materials in Catalysis,” Microporous and Mesoporous Materials, Vol. 77, No. 1, 2005, pp. 1-45. doi:10.1016/j.micromeso.2004.06.030
[12] S. Wang, “Ordered Mesoporous Materials for Drug Delivery,” Microporous and Mesoporous Materials, Vol. 117, No. 1-2, 2009, pp. 1-9. doi:10.1016/j.micromeso.2008.07.002
[13] U. Ciesla and F. Schüth, “Ordered Mesoporous Materials,” Micro-porous and Mesoporous Materials, Vol. 27, No. 2-3, 1999, pp. 131-149. doi:10.1016/S1387-1811(98)00249-2
[14] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Sílica Structures,” Journal of the American Chemical Society, Vol. 120, No. 24, 1998, pp. 6024-6036. doi:10.1021/ja974025i
[15] J. S. Beck and J. C. Vartuli, “Recent Advances in the Synthesis, Characterization and Applications of Mesoporous Molecular Sieves,” Current Opinion in Solid State & Materials Science, Vol. 1, No. 1, 1996, pp. 76-87. doi:10.1016/S1359-0286(96)80014-3
[16] M. Hartmann, “Ordered Mesoporous Materials for Bioad- sorption and Biocatalysis,” Chemistry of Materials, Vol. 17, No. 18, 2005, pp. 4577-4593. doi:10.1021/cm0485658
[17] D. C. Coughlan, F. P. Quilty and O. I. Corrigan, “Effect of Drug Physicho-chemical Properties on Swelling/Des-welling Kinetics and Pulsatile Drug Release from Thermoresponsive Poly(N-isopropylacrylamide) Hydrogels,” Journal of Controlled Release, Vol. 98, No. 1, 2006, pp. 97-114. doi:10.1016/j.jconrel.2004.04.014
[18] A. S. Hoffman, “Applications of Thermally Reversible Polymers and Hydrogels in Therapeutics and Diagnostics,” Journal of Controlled Release, Vol. 6, No. 1, 1987, pp. 297-305. doi:10.1016/0168-3659(87)90083-6
[19] N. A. Peppas, “Hydrogels in Pharmaceutical Formulations,” European Journal of Pharmaceutics and Biophar- maceutics, Vol. 50, No. 1, 2000, pp. 27-46. doi:10.1016/S0939-6411(00)00090-4
[20] N. A. Peppas and R. Langer, “Advances in Biomaterials, Drug Delivery, and Bionanotechnology,” Bioengineering, Food, and Natural Products, Vol. 49 No. 12, 2003, pp. 2990-3006. doi:10.1002/aic.690491202
[21] R. F. S. Freitas and E. L. Cussler, “Temperature Sensitive Gels as Extraction Solvents,” Chemical Engineering Science, Vol. 42, No. 1, 1987, pp. 97-103. doi:10.1016/0009-2509(87)80213-0
[22] R. F. S. Freitas and E. L. Cussler, “Temperature Sensitive Gels as Size Selective Absorbants,” Separation Science and Technology, Vol. 22, No. 2-3, 1987, pp. 911-919. doi:10.1080/01496398708068989
[23] V. Castelvetro and C. De Vitaa, “Nanostructured Hybrid Materials from Aqueous Polymer Dispersions,” Advances in Colloid and Interface Science, Vol. 108-109, 2004, pp. 167-185. doi:10.1016/j.cis.2003.10.017
[24] Y. Chun and B.-S. Tian, “Preparation and Characterization of Thermo-Sensitive Mesoporous PNIPAAm/SBA- 15 Composite,” Acta Chimica Sinica, Vol. 66, No. 5, 2008, pp. 505-510.
[25] S. Zhu, Z. Zhou, D. Zhang, C. Jin and Z. Li, “Design and Synthesis of Delivery System Based on SBA-15 with Magnetic Particles Formed in Situ and Thermo-Sensitive P-Napalm as Controlled Switch,” Microporous and Meso- porous Materials, Vol. 106, No. 1-3, 2007, pp. 56-61. doi:10.1016/j.micromeso.2007.02.027
[26] Z. Zhou, S. Zhu and D. Zhang, “Grafting of Thermo-Responsive Polymer inside Mesoporous Silica with Large Pore Size Using ATRP and Investigation of Its Use in Drug Release,” Journal of Materials Chemistry, Vol. 17, No. 23, 2007, pp. 2428-2433. doi:10.1039/b618834f
[27] A. Sousa and E. M. B. Sousa, “Influence of Synthesis Temperature on the Structural Characteristics of Mesoporous Silica,” Journal of Non-Crystalline Solids, Vol. 352, No. 32-35, 2006, pp. 3451-3456. doi:10.1016/j.jnoncrysol.2006.03.080
[28] R. G. Sousa, “Structural Characterization of the Gel Thermosensitive Poly(N-isopropylacrylamide) and Its Copolymers with Acrylamide,” Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, 1997.
[29] A. Sousa, D. A. Maria, R. G. Sousa and E. M. B. Sousa, “Synthesis and Characterization of Mesoporous Silica/ Poly(N-isopropylacrylamide) Functional Hybrid Useful for Drug Delivery,” Journal of Material Science, Vol. 45, No. 6, 2010, pp. 1478-1486. doi:10.1007/s10853-009-4106-3
[30] T. Kokubo, et al., “Solutions Able to Reproduce in Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W,” Journal of Biomedical Materials Research, Vol. 24, No. 6, 1990, pp. 721-734. doi:10.1002/jbm.820240607
[31] T. Higuchi, “Mechanism of Sustained-Action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices,” Journal of Pharmaceuticals Science, Vol. 52, No. 12, 1963, pp. 1145. doi:10.1002/jps.2600521210

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.