Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization

Abstract

The effect of structural evolution polyacrylonitrile (PAN) on mechanical properties was investigated in stabilization and carbonization. PAN spun fibers were stabilized in a convection oven with a constant tension for various times at 250℃. Fourier Transform Infrared spectroscopy (FTIR) and gel fraction results suggested that intra and intermolecular stabilization reactions occurred simultaneously. X-ray diffractograms revealed a disruption of crystalline structure and an appearance of pre-graphitic structure of PAN fibers due to stabilization. These structural changes by stabilization resulted in the significant decrease of tensile properties of fibers. In Raman spectra with heat treated fibers from 400℃ up to 1200℃, the intensity ratio of the D to G bands (ID/IG) decreased as heat treatment temperature increased, indicating an increase of basal plane of graphitic layer of heat treated fibers. Tensile strength of heat treated fibers at 1200℃ was found to be as high as 2.2 GPa.

Share and Cite:

Lee, S. , Kim, J. , Ku, B. , Kim, J. and Joh, H. (2012) Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Advances in Chemical Engineering and Science, 2, 275-282. doi: 10.4236/aces.2012.22032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. D. Buckley and D. D. Edie, “Carbon-Carbon Materials and Composites,” NASA Reference Publication 1254, 1992.
[2] M. K. Seo, S. H. Park, S. H. Kang and S. J. Park, “Carbon Fibers (III): Recent Technical and Patent Trends,” Carbon Letters, Vol. 10, No. 1, 2009, pp. 43-51.
[3] A. Koganemaru, Y. Bin, Y. Agari and M. Matsuo, “Composites of Polyacrylonitrile and Multiwalled Carbon Nanotubes Prepared by Gelation/Crystallization from Solution,” Advanced Functional Materials, Vol. 14, No. 9, 2004, pp. 842-850. doi:10.1002/adfm.200305034
[4] E. Fitzer, W. Frohs and M. Heine, “Optimization of Stabilization and Carbonization Treatment of PAN Fibers and Structural Characterization of the Resulting Carbon Fibers,” Carbon, Vol. 24, No. 4, 1986, pp. 387-395. doi:10.1016/0008-6223(86)90257-5
[5] J. Kim, Y. C. Kim, W. Ahn and C. Y. Kim, “Reaction Mechanisms of Polyacrylonitrile on Thermal Treatment,” Polymer Engineering & Science, Vol. 33, No. 22, 1993, pp. 1452-1457. doi:10.1002/pen.760332203
[6] A. Yamane, D. Sawai, T. Kaneda, T. Kanemoto, M. Ito and R. S. Porter, “Development of High Ductility and Tensile Properties upon Two-Stage Draw of Ultrahigh Molecular Weight Poly(Acrylonitrile),” Macromolecules, Vol. 30, No. 14, 1997, pp. 4170-4178. doi:10.1021/ma9614095
[7] S. Lee, J. Kim, B. C. Ku, J. Kim and Y. Chung, “Effect of Process Condition on Tensile Properties of Carbon Fiber,” Carbon Letters, Vol. 12, No. 1, 2011, pp. 26-30. doi:10.5714/CL.2011.12.1.026
[8] Q. Ouyang, L. Cheng, H. Wang and K. Li, “Mechanism and Kinetics of the Stabilization Reactions of Itaconic Acid-Modified Polyacrylonitrile,” Polymer Degradation and Stability, Vol. 93, No. 8, 2008, pp. 1415-1421. doi:10.1016/j.polymdegradstab.2008.05.021
[9] I. Shimada and T. Takahagi, “FT-IR Study of the Stabilization Reactions of Polyacrylonitrile in the Production of Carbon Fibers,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 24, No. 8, 1986, pp. 1989-1995.
[10] T. Takahagi, I. Shimada, M. Fukuhara, K. Morita and A. Ishitani, “XPS Studies on the Chemical Structure of the Stabilized Polyacrylonitrile Fiber in the Carbon Fiber Production Process,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 24, No. 11, 1986, pp. 3101-3107.
[11] S. Dalton, F. Heatley and P. M. Budd, “Thermal Stabilization of Polyacrylonitrile Fiber,” Polymer, Vol. 40, No. 20, 1999, pp. 5531-5543. doi:10.1016/S0032-3861(98)00778-2
[12] T. J. Xue, M. A. McKinney and C. A. Wilkie, “The Thermal Degradation of Polyacrylonitrile,” Polymer Degradation and Stability, Vol. 58, No. 1-2, 1997, pp. 193-202. doi:10.1016/S0141-3910(97)00048-7
[13] Y. Zhu, M. A. Wilding and S. K. Mukhopadhyay, “Estimation, using Infrared Spectroscopy, of the Cyclization of Poly(Acrylonitrile) during the Stabilization Stage of Carbon Fibre Production,” Journal of Materials Science, Vol. 31, No. 14, 1996, pp. 3831-3837. doi:10.1007/BF00352799
[14] A. Gupta and I. R. Harrison, “New Aspects in the Oxidative Stabilization of PAN-Based Carbon Fibers,” Carbon, Vol. 34, No. 11, 1996, pp. 1427-1445. doi:10.1016/S0008-6223(96)00094-2
[15] P. Bajaj, T. V. Screekumar and K. Sen, “Thermal Behavior of Acrylonitrile Copolymers Having Methacrylic and Itaconic Acid Comonomers,” Polymer, Vol. 42, No. 4, 2001, pp. 1707-1718. doi:10.1016/S0032-3861(00)00583-8
[16] N. Chatterjee, S. Basu, K. Palit and M. M. Maiti, “XRD Characterization of the Thermal Degradation of Polyacrylonitrile,” Journal of Polymer Science Part B: Polymer Physics, Vol. 33, No. 12, 1995, pp. 1705-1712.
[17] R. B. Mathur, O. P. Bahl, J. Mittal and K. C. Nagpal, “Structure of Thermally Stabilized PAN Fibers,” Carbon, Vol. 29, No. 7, 1991, pp. 1059-1061. doi:10.1016/0008-6223(91)90189-P
[18] A. Gupta and I. R. Harrison, “New Aspects in the Oxidative Stabilization of PAN-Based Carbon Fibers II,” Carbon, Vol. 35, No. 6, 1997, pp. 809-818. doi:10.1016/S0008-6223(97)00025-0
[19] D. Li, H. Wang and X. Wang, “Effect of Microstructure on the Modulus of PAN-Based Carbon Fibers during High Temperature Treatment and Hot Stretching Graphitization,” Journal of Materials Science, Vol. 42, No. 12, 2007, pp. 4642-4649. doi:10.1007/s10853-006-0519-4
[20] N. Keller, N. I. Maksimova, V. V. Roddatis, M. Schur, G. Mestl, Y. V. Butenko, V. L. Kuznetsov and R. Schlogl, “The Catalytic Use of Onion-Like Carbon Materials for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene,” Angewandte Chemie International Edition, Vol. 41, No. 11, 2002, pp. 1885-1888. doi:10.1002/1521-3773(20020603)41:11<1885::AID-ANIE1885>3.0.CO;2-5
[21] N. Melanitis, P. L. Tetlow and C. Galiotis, “Characterization of PAN-Based Carbon Fibres with Laser Raman Spectroscopy,” Journal of Materials Science, Vol. 31, No. 4, 1996, pp. 851-860. doi:10.1007/BF00352882

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.