Expression of the polycomb group gene Bmi1 does not affect the prognosis of pediatric acute lymphoblastic leukemia

Abstract

The Polycomb group protein Bmi1 is a constituent of the Polycomb repressive complex 1, and it is an important molecule for the regulation of the self-renewal of hematopoietic stem cells. In the field of clinical hematology, there are reports that the level of Bmi1 expression in blast cells is related to the prognosis of acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome. We investigated whether the level of Bmi1 expression in leukemic cells is related to the prognosis and the characteristics of childhood acute lymphoblastic leukemia. In all the leukemic blast cells, Bmi1 gene expression was lower value than that in normal B cells. There were no correlations between the level of Bmi1 gene expression in leukemic blast cells and other parameters, including prognosis. Here, we report that the level of Bmi1 expression in blast cells is not related to the prognosis of pediatric acute lymphoblastic leukemia.

Share and Cite:

Kajiume, T. , Ishikawa, N. , Ohno, N. , Sera, Y. , Karakawa, S. and Kobayashi, M. (2012) Expression of the polycomb group gene Bmi1 does not affect the prognosis of pediatric acute lymphoblastic leukemia. Stem Cell Discovery, 2, 25-30. doi: 10.4236/scd.2012.22004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Alkema, M.J., Bronk, M., Verhoeven, E., Otte, A., van’t Veer, L.J., Berns. A. and van Lohuizen. M. (1997) Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes & Development, 11, 226-240. doi:10.1101/gad.11.2.226
[2] Gunster, M.J., Satijn, D.P., Hamer, K.M., den Blaauwen, J.L., de Bruijn, D., Alkema, M.J., van Lohuizen, M., van Driel, R. and Otte, A.P. (1997) Identification and characterization of interactions between the vertebrate polycombgroup protein BMI1 and human homologs of polyhomeotic. Molecular and Cellular Biology, 17, 2326-2335.
[3] Hashimoto, N., Brock, H.W., Nomura, M., Kyba, M., Hodgson, J., Fujita, Y., Takihara, Y., Shimada, K. and Higashinakagawa, T. (1998) RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian polycomb group complexes. Biochemical and Biophysical Research Communications, 245, 356-365. doi:10.1006/bbrc.1998.8438
[4] Shao, Z., Raible, F., Mollaaghababa, R., Guyon, J.R., Wu, C.T., Bender, W. and Kingston, R.E. (1999) Stabilization of chromatin structure by PRC1, a polycomb complex. Cell, 98, 37-46. doi:10.1016/S0092-8674(00)80604-2
[5] Francis, N.J., Saurin, A.J., Shao, Z. and Kingston, R.E. (2001) Reconstitution of a functional core polycomb repressive complex. Molecular Cell, 8, 545-556. doi:10.1016/S1097-2765(01)00316-1
[6] Park, I.K., Qian, D., Kiel, M., Becker, M.W., Pihalja, M., Weissman, I.L., Morrison, S.J. and Clarke, M.F. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302-305.
[7] Lessard, J. and Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255-260.
[8] Chowdhury, M., Mihara, K., Yasunaga, S., Ohtaki, M., Takihara, Y. and Kimura, A. (2007) Expression of polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia, 21, 1116-1122. doi:10.1038/sj.leu.2404623
[9] Mohty, M., Yong, A.S., Szydlo, R.M., Apperley, J.F. and Melo, J.V. (2007) The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood, 110, 380-383. doi:10.1182/blood-2006-12-065599
[10] Mihara, K., Chowdhury, M., Nakaju, N., Hidani, S., Ihara, A., Hyodo, H., Yasunaga, S., Takihara, Y. and Kimura, A. (2006) Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood, 107, 305-308. doi:10.1182/blood-2005-06-2393
[11] Bonnet, D. and Dick, J.E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730-737. doi:10.1038/nm0797-730
[12] Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. (2003) Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983-3988. doi: 10.1073/pnas.0530291100
[13] Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J. and Dirks, P.B. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821-5828.
[14] Xin, L., Lawson, D.A. and Witte, O.N. (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 6942-6947. doi:10.1073/pnas.0502320102
[15] Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111-115.
[16] Li, C., Heidt, D.G., Dalerba, P., Burant, C.F., Zhang, L., Adsay, V., Wicha, M., Clarke, M.F. and Simeone, D.M. (2007) Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030-1037. doi: 10.1158/0008-5472.CAN-06-2030
[17] Yamazaki, H., Nishida, H., Iwata, S., Dang, N.H. and Morimoto, C. (2009) CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells. Biochemical and Biophysical Research Communications, 383, 172-177. doi:10.1016/j.bbrc.2009.03.127
[18] Nishida, H., Yamazaki, H., Yamada, T., Iwata, S., Dang, N.H., Inukai, T., Sugita, K., Ikeda, Y. and Morimoto, C. (2009) CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells. Biochemical and Biophysical Research Communications, 382, 57-62. doi:10.1016/j.bbrc.2009.02.123
[19] Zhang, S., Balch, C., Chan, M.W., Lai, H.C., Matei, D., Schilder, J.M., Yan, P.S., Huang, T.H. and Nephew, K.P. (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Research, 68, 4311-4320. doi:10.1158/0008-5472.CAN-08-0364
[20] Wang, E., Bhattacharyya, S., Szabolcs, A., RodriguezAguayo, C., Jennings, N.B., Lopez-Berestein, G., Mukherjee, P., Sood, A.K. and Bhattacharya, R. (2011) Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS One, 6, p. e17918. doi:10.1371/journal.pone.0017918
[21] Lessard, J., Baban, S. and Sauvageau, G. (1998) Stagespecific expression of polycomb group genes in human bone marrow cells. Blood, 91, 1216-1224.
[22] Miyazaki, M., Miyazaki, K., Itoi, M., Katoh, Y., Guo, Y., Kanno, R., Katoh-Fukui, Y., Honda, H., Amagai, T., van Lohuizen, M., Kawamoto, H. and Kanno, M. (2008) Thymocyte proliferation induced by pre-T cell receptor signaling is maintained through polycomb gene product Bmi1-mediated Cdkn2a repression. Immunity, 28, 231-245. doi:10.1016/j.immuni.2007.12.013
[23] Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. and van Lohuizen, M. (1999) The oncogene and polycombgroup gene bmi-1 regulates cell proliferation and sensecence through the ink4a locus. Nature, 397, 164-168.
[24] Hosen, N., Yamane, T., Muijtjens, M., Pham, K., Clarke, M.F. and Weissman, I.L. (2007) Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoietic cells. Stem Cells, 25, 1635-1644. doi:10.1634/stemcells.2006-0229
[25] Chiba, T., Miyagi, S., Saraya, A., Aoki, R., Seki, A., Morita, Y., Yonemitsu, Y., Yokosuka, O., Taniguchi, H., Nakauchi, H. and Iwama, A. (2008) The polycomb gene product BMI1 contributes to the maintenance of tumorinitiating side population cells in hepatocellular carcinoma. Cancer Research, 68, 7742-7749. doi:10.1158/0008-5472.CAN-07-5882
[26] Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I.R., Lu, L., Irvin, D., Black, K.L. and Yu, J.S. (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular Cancer, 5, 67-78. doi:10.1186/1476-4598-5-67
[27] Gutova, M., Najbauer, J., Gevorgyan, A., Metz, M.Z., Weng, Y., Shih, C.C. and Aboody, K.S. (2007) Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE, 2, p. e243. doi:10.1371/journal.pone.0000243
[28] Shafee, N., Smith, C.R., Wei, S., Kim, Y., Mills, G.B., Hortobagyi, G.N., Stanbridge, E.J. and Lee, E.Y. (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Research, 68, 3243-3250. doi:10.1158/0008-5472.CAN-07-5480
[29] Geller, R.B., Zahurak, M., Hurwitz, C.A., Burke, P.J., Karp, J.E., Piantadosi, S., Civin, C.I. (1990) Prognostic importance of immunophenotyping in adults with acute myelocytic leukaemia: the significance of the stem-cell glycoprotein CD34 (My10). British Journal of Haematology, 76, 340-347. doi:10.1111/j.1365-2141.1990.tb06365.x
[30] Myint, H. and Lucie, N.P. (1992) The prognostic significance of the CD34 antigen in acute myeloid leukaemia. Leukemia & Lymphoma, 7, 425-429.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.