Comparative Effect of Ca, K, Mn and B on Post-Drought Stress Recovery in Tea [Camellia sinensis (L.) O Kuntze]

Abstract Full-Text HTML XML Download Download as PDF (Size:2529KB) PP. 443-460
DOI: 10.4236/ajps.2012.34054    5,902 Downloads   10,767 Views   Citations

ABSTRACT

Tea (Camellia sinensis) is one of the most important economic crops. Being perennial in nature, tea plant often experiences natural drought, which affects its growth and productivity. The present investigation was undertaken to understand the mechanism of post-drought stress recovery on rehydration and the effect of nutrients in the recovery process of the selected clones of Camellia sinensis L. (TV-1, TV-20, TV-29 & TV-30). The results demonstrated that decrease in relative water content (RWC), dry mass of leaf and antioxidants like-ascorbate and glutathione in all the tested clones, as a result of imposed water stress, which caused damage was not permanent. Increase in phenolic content with decrease in O2-, H2O2 and lipid peroxidation was indication of the recovery of stress induced oxidative damage following the post stress rehydration. Further, the post drought recovery was enhanced by foliar spray of K, Ca, Mn & B. Differential activities of enzymes like SOD, CAT, POX, GR and PPO in response to foliar spray of nutrients in rehydrated plant improved the recovery process. The present study reveals that the tested nutrients (K, Ca, Mn & B) showed some positive response in influencing growth and antioxidative responses during post drought recovery process, where K and Ca showed comparatively better effect in improving post drought recovery potential in tea plant.

Cite this paper

H. Upadhyaya, B. Dutta, L. Sahoo and S. Panda, "Comparative Effect of Ca, K, Mn and B on Post-Drought Stress Recovery in Tea [Camellia sinensis (L.) O Kuntze]," American Journal of Plant Sciences, Vol. 3 No. 4, 2012, pp. 443-460. doi: 10.4236/ajps.2012.34054.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Upadhyaya and S. K. Panda, “Responses of Camellia sinensis to Drought and Rehydration,” Biologia Plantarum, Vol. 48, No. 4, 2004, pp. 597-600. doi:10.1023/B:BIOP.0000047158.53482.37
[2] C. A. Jaleel, P. Manivannan, A. Kishorekumar, B. Sankar, R. Gopi, R. Somasundaram and R. Panneerselvam, “Al-terations in Osmoregulation, Antioxidant Enzymes and Indole Alkaloid Levels in Catharanthus roseus Exposed to Water Deficit,” Colloids Surface. B: Biointerfaces, Vol. 59, No. 2, 2007, pp. 150-157. doi:10.1016/j.colsurfb.2007.05.001
[3] L. Vomacka and J. Pospisilava, “Rehydration of Sugar Beet Plants after Water Stress: Effect of Cytokinins,” Biologia Plantarum, Vol. 46, No. 1, 2003, pp. 57-62. doi:10.1023/A:1022306032416
[4] C. D. Foy, B. J. Scott and J. A. Fisher, “Genetic Differ-ences in Plant Tolerance to Manganese Toxicity,” In: R. D. Graham, R. J. Hannam and N. C. Uren, Eds., Manganese in Soils and Plant, Kluwer Academic Publishers, Dordrecht, 1988, pp. 293-307. doi:10.1007/978-94-009-2817-6_20
[5] F. C. Lidon and F. S. Henriques, “Effects of Excess Copper on Photosynthetic Pigments in Rice Plants,” Botanical Bulletin of Academic Sinica, Vol. 33, 1992, pp. 141- 149.
[6] C. F. Lidon, G. M. Barreiroc and C. J. Ramalho, “Manganese Accumulation in Rice: Implications for Photosynthetic Functioning,” Journal of Plant Physiology, Vol. 161, No. 11, 2004, pp. 1235-1244. doi:10.1016/j.jplph.2004.02.003
[7] P. E. Pfeffer, S. I. Tu, W. V. Gerasimowicz and J. R. Cavanaughk, “In Vivo 31PNMR Studies of Corn Root Tissue and Its Uptake of Toxic Metals,” Plant Physiology, Vol. 80, 1986, pp. 77-84. doi:10.1104/pp.80.1.77
[8] R. L. Houtz, R. O. Nable and G. M. Cheniae, “Evidence for Effects on the in Vivo Activity of Ribulose-Bisphosphate Carboxylase/Oxygenase during Development of Mn Toxicity in Tobacco,” Plant Physiology, Vol. 86, No. 4, 1988, pp. 1143-1149. doi:10.1104/pp.86.4.1143
[9] P. J. Ness and H. W. Woolhouse, “RNA synthesis in Phaseolus chloroplasts. Ribonucleic acid synthesis and senescing leaves,” Journal Experimental Botany, Vol. 31, No. 1, 1980, pp. 223-233. doi:10.1093/jxb/31.1.223
[10] M. Shenker, E. Plessner Ora and E. Tel-Or, “Manganese Nutrition Effects on Tomato Growth, Chlorophyll Concentration, and Superoxide Dismutase Activity,” Journal Plant Physiology, Vol. 161, No. 2, 2004, pp. 197-202. doi:10.1078/0176-1617-00931
[11] J. J. Camacho-Cristobal, L. Lunarb, F. Lafontc, A. Baumertd and A. Gonz!alez-Fontesa, “Boron Deficiency Causes Accumulation of Chlorogenic Acid and Caffeoyl Polyamine Conjugates in Tobacco Leaves,” Journal of Plant Physiology, Vol. 161, No. 7, 2004, pp. 879-881. doi:10.1016/j.jplph.2003.12.003
[12] A. Ben-Gal and U. Shani, “Water Use and Yield of Tomatoes under Limited Water and Excess Boron,” Plant and Soil, Vol. 256, No. 1, 2003, pp. 179-186. doi:10.1023/A:1026229612263
[13] C. J. Li, H. Pfeffer, F. Dannel, V. Romheld and F. Bangerth, “Effects of Boron Starvation on Boron Compartmentation, and Possibly Hormone-Mediated Elongation Growth and Apical Dominance of Pea (Pisum sativum) Plants,” Physiologia Plantarum, Vol. 111, No. 2, 2001, pp. 212-219. doi:10.1034/j.1399-3054.2001.1110212.x
[14] J. M. Ruiz, R. M. Rivero and L. Romero, “Boron Increases Synthesis of Glutathione in Sunflower Plants Subjected to Aluminum Stress,” Plant and Soil, Vol. 279, No. 1-2, 2006, pp. 25-30. doi:10.1007/s11104-005-7931-4
[15] H. Nayyar and S. K. Kaushal, “Alleviation of Negative Effects of Water Stress in Two Contrasting Wheat Genotypes by Calcium and Absicic Acid,” Biologia Plantarum, Vol. 45, No. 1, 2002, pp. 65-70. doi:10.1023/A:1015132019686
[16] M. C. Rentel, and M. R. Knight, “Oxidative Stress-Induced Calcium Signaling in Arabidopsis,” Plant Physiology, Vol. 135, No. 3, 2004, pp. 1471-1479. doi:10.1104/pp.104.042663
[17] D. Sanders, J. Pelloux, C. Brownlee and J. F. Harper, “Calcium at the Crossroads of Signaling,” Plant Cell, Vol. 14, 2002, pp. S401-S417.
[18] N. H. Evans, M. R. McAinsh, A. M. Hetherington and M. R. Knight, “ROS Perception in Arabidopsis thaliana: The Ozoneinduced Calcium Response,” Plant Journal, Vol. 41, No. 4, 2005, pp. 615-626. doi:10.1111/j.1365-313X.2004.02325.x
[19] G. Noctor, “Metabolic Signalling in Defence and Stress: The Central Roles of Soluble Redox Couples,” Plant Cell and Environment, Vol. 29, No. 3, 2006, pp. 409-425. doi:10.1111/j.1365-3040.2005.01476.x
[20] N. Bouché, A. Yellin, W. A. Snedden and H. Fromm, “Plant Specific Calmodulin-Binding Proteins,” Annual Review of Plant Biology, Vol. 56, 2005,pp. 435-466. doi:10.1146/annurev.arplant.56.032604.144224
[21] I. Cakmak, “The Role of Potassium in Alleviating Detrimental Effects of Abiotic Stresses in Plants,” Proceedings of the IPI Golden Jubilee Congress, 8-10 October 2002, Basel, 2003, pp. 325-343.
[22] M. K. Ashley, M. Grant and A. Grabov, “Plant Responses to Potassium Deficiencies: A Role for Potassium Transport Proteins,” Journal of Experimental Botany, Vol. 57, No. 2, 2006, pp. 425-436. doi:10.1093/jxb/erj034
[23] H. D. Bars and P. E. Weatherly, “Are Examination of the Relative Turgidity Technique for Estimating Water Deficit in Leaves?” Australian Journal of Biological Science, Vol. 15, 1962, pp. 413-428.
[24] A. Mahadevan and R. Sridhar, “Methods in Physiological Plant Pathology,” 2nd Edition, Sivakami Publications, Madras, 1982.
[25] L .S. Bates, R. P. Waldern and I. K. Teare, “Rapid Determination of Free Proline for Water Stress Studies,” Plant and Soil. Vol. 39, No. 1, 1973, pp. 205-208. doi:10.1007/BF00018060
[26] O. W. Griffth, “Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine,” Annalytical Biochemistry, Vol. 106, 1980, pp. 207-211.
[27] B. L. Oser, “Hawks Physiological Chemistry,” McGraw Hill, New York, 1979, pp. 702-705.
[28] S. Sagisaka, “The Occurrence Of Peroxide in a Perennial Plant Populas gelrica,” Plant Physiology, Vol. 57, No. 2, 1976, pp. 308-309. doi:10.1104/pp.57.2.308
[29] R. L. Heath and L. Packer, “Photoperoxidation in Isolated Chlorplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation,” Archives Biochemistry Biophysics, Vol. 125, No. 1, 1968, pp. 189-198. doi:10.1016/0003-9861(68)90654-1
[30] E. F. Elstner and A. Heupal, “Inhibition of Nitrite Formation from Hydroxyl Ammonium Chloride: A Simple Assay for Superoxide Dismutase,” Analytical Biochemistry, Vol. 70, 1976, pp. 616-620. doi:10.1016/0003-2697(76)90488-7
[31] B. A. Chance and C. Maehly, “Assay of Catalase and Peroxidase,” Methods Enzymology, Vol. 2, 1995, pp. 764-775. doi:10.1016/S0076-6879(55)02300-8
[32] M. Kar and D. Mishra, “Catalase, Peroxidase and Polyphenol Oxidase Activities during Rice Leaf Senescence,” Plant Physiology, Vol. 57, 1976, pp. 315-319. doi:10.1104/pp.57.2.315
[33] C. N. Giannopolitis and S. K Ries, “Superoxide Dismutase I. Occurrence in Higher Plants,” Plant Physiology, Vol. 59, No. 2, 1977, pp. 309-314. doi:10.1104/pp.59.2.309
[34] I. K. Smith, T. L. Vierheller and C. A. Thorne, “Assay of Glutathione Reductase in Crude Tissue Homogenates Using 5,51-Dithiobis(2-Nitrobenzoic Acid),” Analytical Biochemistry, Vol. 175, No. 2, 1988, pp. 408-413. doi:10.1016/0003-2697(88)90564-7
[35] A. H. A. Farooqui, R. Kumar, S. Fatima and S. Sharma, “Responses of Different Genotypes of Lemon Grass (Cymbopogon flexuousus and C. Pendulus) to Water Stress,” Journal of Plant Biology, Vol. 27, 2000, pp. 277- 282.
[36] C. H. Foyer, H. Lopez-Delgado, J. F. Dat and I. M. Scott, “Hydrogen Peroxide and Glutathione-Associated Mechanisms of Acclimatory Stress Tolerance and Signaling,” Physiologia Plantarum, Vol. 100, No. 2, 1997, pp. 241- 254. doi:10.1111/j.1399-3054.1997.tb04780.x
[37] C. A. Jaleel, P. Manivannan, A. Kishorekumar, B. Sankar, R. Gopi, R. Somasundaram and R. Panneerselvam, “Water Deficit Stress Mitigation by Calcium Chloride in Catharanthus roseus: Effects on Oxidative Stress, Praline Metabolism and Indole Alkaloid Accumulation,” Colloids Surface. B: Biointerfaces, Vol. 60, No. 1, 2007, pp. 110-116. doi:10.1016/j.colsurfb.2007.06.006
[38] G. M. Cheniae and J. F. Martin, “Site of Function of Manganese within Photosystem II. Roles in O2 Evolution and System II,” Biochemistry and Biophysics Acta, Vol. 197, No. 2, 1970, pp. 219-239. doi:10.1016/0005-2728(70)90033-2
[39] S. Kathju, S. P. Vyas, B. K. Garg, and A. N Lahiri, “Fertility Induced Improvements in Performance and Metabolism of Wheat under Different Intensities of Water Stress,” Proceedings of the International Congress of Plant Physiology, New Delhi, 1988, pp. 854-858.
[40] J. Levitt, “Responses of Plants to Environmental Stress,” Volume I, Academic Press, London, 1980.
[41] A. C. Handique and L. Manivel, “Selection Criteria for Drought Tolerance in Tea,” Assam Review of Tea News, Vol. 79, 1990, pp. 18-21.
[42] Y. Yoshiba, T. Kiyosue, K. Nakashima, K. Yamaguchi Shirozaki and K Shinozaki, “Regulation of Level of Proline as an Osmolyte in Plant under Water Stress,” Plant Cell Physiology, Vol. 18, 1997, p. 1095.
[43] J. Matysik, B. B. Ali and P. Mohanty, “Molecular Mechanism of Quenching of Reactive Oxygen Species by Proline under Water Stress in Plants,” Current Science, Vol. 82, No. 5, 2002, pp. 525-532.
[44] Ch. Sulochana and N. Sanithramma, “Effect of Calcium in Amelioration of PEG (600) Induced Water Stress in Ground Nut (Araclus hypogaea L.) Cultivars during Seedling Growth,” Journal of Plant Biology, Vol. 28, 2001, pp. 257-263.
[45] L. A. Battle and S. Munne-Bosch, “Regulation of Plant Response to Drought. Function of Plant Hormones and Antioxidants,” In: A. Hemantaranjan, Ed., Advances in Plant Physiology, Scientific Publishers (India), Jodhpur, Vol. 5, 2003, pp. 267-285.
[46] R. Jianyun, W. Xun and R. Hardter, “Effect of Potassium and Magnesium Nutrition on the Quality Components of Different Types of Tea,” Journal of Science Food and Agriculture, Vol. 79, No. 1, 1999, pp. 47-52. doi:10.1002/(SICI)1097-0010(199901)79:1<47::AID-JSFA172>3.0.CO;2-A
[47] J. N. Egilla, F. T. Davies, M. C. Drew Jr., “Effect of Potassium on Drought Resistance of Hibiscus rosasinensis cv. Leprechaun: Plant Growth, Leaf Macro- and Micro- nutrient Cont and Root Longevity,” Plant and Soil, Vol. 229, No. 2, 2001, pp. 213-224. doi:10.1023/A:1004883032383
[48] Y. E. Kolupaev, G. E. Akinina and A. V. Mokrousov, “Induction of Heat Tolerance in Wheat Coleoptiles by Calcium Ions and Its Relation to Oxidative Stress,” Russian Journal of Plant Physiology, Vol. 52, No. 2, 2005, pp. 199-204. doi:10.1007/s11183-005-0030-9
[49] J. M. Ruiz, R.M. Rivero, I. Lo′pez-Cantarero and L. Romero, “Role of Ca2+ in the Metabolism of Phenolic Compounds in Tobacco Leaves (Nicotiana tabaccum L.),” Plant Growth Regulation, Vol. 41, No. 2, 2003, pp. 73- 177. doi:10.1023/A:1027358423187
[50] A. F. Teixeira, A. de Bastos Andrade, O. Ferrarese-Filho and M. L. Lucio Ferrarese, “Role of Calcium on Phenolic Compounds and Enzymes Related to Lignification in Soybean (Glycine max L.) Root Growth,” Plant Growth Regulation. Vol. 49, No. 1, 2006, pp. 69-76.
[51] C. Cabrera, R. Artacho and R. Gimenez, “Beneficial Effect of Green Tea—A Review,” Journal of American College of Nutrition, Vol. 25, No. 2, 2006, pp. 79-99.
[52] W. M. Dugger, “Boron in Plant Metabolism,” In: A. Lauchli and K. L. Bieleski, Eds., Inorganic Plant Nutrition (Encyclopedia of Plant Physiology, New Series), Springer Verleg, Berlin, Vol. 15B, 1983, pp. 625-650.
[53] I. Cakmak and V. Romheld, “Boron Deficiency-Induced Impairments of Cellular Functions in Plants,” Plant and Soil, Vol. 193, No. 1-2, 1997, pp. 71-83. doi:10.1023/A:1004259808322
[54] A. Matkowski and D. Wolniak, “Plant Phenolic Metabolites as the Free Radical Scavenger and Mutagenesis Inhibitors,” BMC Plant Biology, Vol. 5, 2005, p. S23. doi:10.1186/1471-2229-5-23
[55] K. Asada and M. Takahashi, “Production and Scavenging of Active Oxygen in Photosynthesis,” In: D. J. Kyle, C. B. Osmond and C. J. Arntzen, Eds., Photoinhibition, El-sevier, Amsterdam, 1987, pp. 227-287.
[56] P. R. Jeyaramraya, R. K. Roy, P. K. Pius and J. Thomas, “Photoassimilatory and Photorespiratory Behaviour of Certain Drought Tolerant and Susceptible Tea Clones,” Photosynthetica, Vol. 41, No. 4, 2003, pp. 579-582. doi:10.1023/B:PHOT.0000027523.51145.a0
[57] C. Foyer, M. Lelandais, C. Galap and K. J. Kunert, “Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions,” Plant Physiology, Vol. 97, No. 3, 1991, pp. 863-872. doi:10.1104/pp.97.3.863
[58] B. Loggini, A. Scartazza, E. Brugusli and F. NavariIzzo, “Antioxidant Defence System, Pigment Composition, and Photosynthetic Efficiency in Two Wheat Cultivars Subjected to Drought,” Plant Physiology, Vol. 119, No. 3, 1999, pp. 1091-1099. doi:10.1104/pp.119.3.1091
[59] S. Sang, S. C. Yang and C.-T. Ho, “Peroxidase Mediated Oxidation of Catechins,” Phytochemistry Review, Vol. 3, No. 1-2, 2004, pp. 229-241. doi:10.1023/B:PHYT.0000047794.45076.7c

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.