Miocene to Pliocene Paleoceanography of the Western Equatorial Pacific Ocean Based on Calcareous Nannofossils, ODP Hole 805B

DOI: 10.4236/ojg.2012.22008   PDF   HTML   XML   4,281 Downloads   7,998 Views   Citations


We describe in detail the Miocene to Quaternary paleoceanography of the western equatorial Pacific Ocean based on calcareous nannofossils of Hole 805B. The relative abundance of Discoaster which lived in the lower photic zone under the stable sea with nutricline and thermocline, decreased step by step at NN5/NN6 and NN10/NN11 boundaries. Al- though the size of Reticulofenestra which is strongly influenced by nutrient, increased five times throughout the section, it drastically decreased in NN4-5 zone, NN10, NN12, and in NN15/NN16 boundary. On the basis of the relationship between Discoaster abundance and Reticulofenestra size change, collapse of the stability of the sea surface in the west- ern equatorial Pacific Ocean progressed step by step throughout the Miocene to Quaternary.

Share and Cite:

M. Farida, R. Imai and T. Sato, "Miocene to Pliocene Paleoceanography of the Western Equatorial Pacific Ocean Based on Calcareous Nannofossils, ODP Hole 805B," Open Journal of Geology, Vol. 2 No. 2, 2012, pp. 72-79. doi: 10.4236/ojg.2012.22008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Molfino and A. McIntyre, “Precessional Forcing of Nutricline Dynamics in the Equatorial Atlantic,” Science, Vol. 249, No. 4970, 1990, pp. 766-760. doi:10.1126/science.249.4970.766
[2] K. Hagino, H. Okada and H. Matsuoka, “Spatial Dynamics of Coccolithophore Assemblages in the Equatorial Western-Central Pacific Ocean,” Marine Micropaleontology, Vol. 39, No. 1-4, 2000, pp. 53-72. doi:10.1016/S0377-8398(00)00014-1
[3] K. Takahashi and H. Okada, “The Paleoceanography for the Last 30.000 Years in the Southeastern Indian Ocean by Means of Calcareous Nannofossils,” Marine Micropaleontology, Vol. 40, No. 1-2, 2000, pp. 83-103. doi:10.1016/S0377-8398(00)00033-5
[4] D. Bukry, “Discoaster Evolutionary Trends,” Micropaleontology, Vol. 17, No. 1, 1971, pp. 43-52. doi:10.2307/1485036
[5] S. A. Nathan and R. M. Leckie, “Early History of the Western Pacific Warm Pool during the Middle to Late Miocene (~13.2–5.8 Ma): Role of Sea-Level Change and Implications for Equatorial Circulation,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 274, 2009, pp. 140-159. doi:10.1016/j.palaeo.2009.01.007
[6] L. W. Kroenke, W. H. Berger, T. R. Janecek, et al., Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 130, 1991, pp. 223-290.
[7] E. Martini, “Standard Tertiary and Quaternary Calcareous Nannoplankton Zoantion,” In: A. Farinacci, Ed., 2nd Proceedings of Planktonic Conference, Roma, Vol. 2, 1971, pp. 739-785.
[8] B. Balestra, P. Ziveri, S. Monechi and S. Troelstra, “Late Quaternary Coccolithophorid Palaeoceanography from the SE Greenland Margin,” 8th International Nannoplankton Association Conference, Bremen, 11-15 September 2000.
[9] K. Baumann, J. R. Young, M. Cachao and P. Ziveri, “Biometric Study of Coccolithus Pelagicus and Its Palaeoenvironmental Utility,” Journal of Nannoplankton Research, Vol. 22, No. 2, 2000, p. 82.
[10] H. Okada and S. Honjo, “The Distribution of Oceanic Coccolithophorids in the Pacific,” Deep-Sea Research, Vol. 20, 1973, pp. 355-374.
[11] D. Bukry, “Low-Latitude Coccolith Biostratigraphic Zonation,” Initial Reports of the Deep Sea Drilling Project, Vol. 15, 1973, pp. 685-703.
[12] M.-P.Aubry, “Late Paleogene Calcareous Nannoplankton Evolution: A Late of Climatic Deterioration,” In: D. R. Prothero and W. A. Berggren, Eds., Eocene-Oligocene Climatic and Biotic Evolution, Princeton University Press, Princeton, 1992, pp. 272-309.
[13] J. A. Flores, F. J. Sierro, J. M. Filippelli, M. A. B′arcena, M. Perez-Folgado, A. Vazquez and R. Utrilla, “Surface Water Dynamics and Phytoplankton Communities during Deposition of Cyclic Late Messinian Sapropel Sequences in the Western Mediterranean,” Marine Micropaleontology, Vol. 56, No. 1-2, 2005, pp. 50-79. doi:10.1016/j.marmicro.2005.04.002
[14] H. M. Stoll, N. Shimizu, D. Archer and P. Ziveri, “Coccolithophore Productivity Response to Greenhouse Event of the Paleocene-Eocene Thermal Maximum,” Earth and Planetary Sciense Letters, Vol. 258, No. 1-2, 2007, pp. 192-206. doi:10.1016/j.epsl.2007.03.037
[15] T. Sato and S. Chiyonobu, “Cenozoic Paleoceanography Indicated by Size Change of Calcareous Nannofossil and Discoaster Abundance,” Fossils, the Palaentological Society of Japan, Vol. 86, 2009, pp. 12-19.
[16] J. Young, “Size Variation of Neogene Reticulofenestra Coccoliths from Indian Ocean DSDP Cores,” Journal of Micropalaeontology, Vol. 9, 1990, pp. 71-85. doi:10.1144/jm.9.1.71
[17] K. Kameo and T. J. Bralower, “Neogene Calcareous Nannofossil Biostratigraphy of Sites 998, 999, and 1000, Caribbean Sea,” In: R. M. Leckie, H. Sigurdsson, G. D. Acton and G. Draper, Eds., Proc. ODP, Sci. Results, College Station, Ocean Drilling Program, Vol. 165, 2000, pp. 3-15.
[18] P. R. Bown, J. A. Less and J. R. Young, “Calcareous Nannoplankton Evolution and Diversity Through Time,” In: H. R. Thierstein and J. R. Young, Eds., Coccolithophores from Molecular Processes to Global Impact, Springer, Berlin, 2004, pp. 481-508.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.