Hydroesterification of Nannochloropsis oculata microalga’s biomass to biodiesel on Al2O3 supported Nb2O5 catalyst


Hydroesterification process has been presented biodiesel production from oil the green microalga Nannochloropsis oculata raw materials. Biodiesel studied in this work is the main product got from the hydroesterification of biomass the Nannochloropsis oculata and was obtained from esterification of fatty acid (product of a hydrolysis reaction) with methanol. It was used as catalyst the niobic acid pure and supported on δ-aluminum. The product was evaluated by gas chromatography and other analyses. The optimum conditions found in the conversion (%) for the hydrolysis reactions of the biomass (92.3%). Better results were observed in the algae concentration 20%, lead at 300?C with 20% of catalyst. For esterification of fatty acids of Nannochloropsis oculata (92.24%), were observed the molar ratio methanol: fat acid 3, lead at 200°C with 20% of catalyst supported.

Share and Cite:

Almarales, A. , Chenard, G. , Abdala, R. , Gomes, D. , Reyes, Y. and Tapanes, N. (2012) Hydroesterification of Nannochloropsis oculata microalga’s biomass to biodiesel on Al2O3 supported Nb2O5 catalyst. Natural Science, 4, 204-210. doi: 10.4236/ns.2012.44031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Vicente, G., Martinez, M. and Aracil, J. (2004) Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresource Technology, 92, 297- 305. doi:10.1016/j.biortech.2003.08.014
[2] Lang, X., Dalai, A.K., Bakhshi, N.N., Reany, M.J. and Hertz, PB. (2001) Preparation and characterization of biodiesel from various bioils. Bioresource Technology, 80, 53-62. doi:10.1016/S0960-8524(01)00051-7
[3] Miao, X. and Wu, Q. (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85- 93. doi:10.1016/j.jbiotec.2004.01.013
[4] Minowa, T., Yokoyama, S.-Y., Kishimoto, M. and Okakurat, T. (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 74, 1735-1738. doi:10.1016/0016-2361(95)80001-X
[5] Haag, A.L. (2007) Algae bloom again. Nature, 447, 520- 521. doi:10.1038/447520a
[6] Xu, H., Miao, X. and Wu, Q. (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499-507. doi:10.1016/j.jbiotec.2006.05.002
[7] Furuta, S., Matsuhashi, H. and Arata, K. (2004) Biodiesel fuel production with solid superacid catalysis fixed bed reactor under atmospheric pressure. Catalysis Communications, 5, 721-723. doi:10.1016/j.catcom.2004.09.001
[8] Carvalho, L., Britto, P., Matovanelli, R., Camacho, L., Antunes, O.A. and Aranda, D.G.A (2005) Esterification of the fatty acid of palm by heterogeneous catalysis. Proceedings of the 13th Brazilian Congress of Catalysis and 3rd Mercosur Congress on Catalysis, Vol. 4, Uberlandia, 1-4.
[9] Knothe, G. (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proc- essing Technology, 86, 1059-1070. doi:10.1016/j.fuproc.2004.11.002
[10] Plank, C. and Lorbeer, E. (1995) Simultaneous determination of glycerol, and mono-, di-and triglycerides in vegetable oil methyl esters by capillary gas chromatography. Journal of Chromatography A, 697, 461-468. doi:10.1016/0021-9673(94)00867-9
[11] Dunn, R.O., (2005) Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process Technology, 86, 1071-1085. doi:10.1016/j.fuproc.2004.11.003
[12] Knothe, G. (2006) Analyzing biodiesel: Standards and other methods. Journal of the American Oil Chemist’s Society, 83, 823-833. doi:10.1007/s11746-006-5033-y
[13] Lee, J.Y. (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresource Te- chnology, 101, S75-S77.
[14] Garibay, A.H., Vázquez-Duhalt, M.P., Serrano, L. and Martínez, A.J. (2009) Biodiesel a partir de microalgas. BioTecnología, 13, 38-60.
[15] Marchetti, J.M., Miguel, V.U. and Errazy, A. F. (2006) Heterogeneous esterifications of oil with high amount of free fatty acids. Fuel, 86, 906-910. doi:10.1016/j.fuel.2006.09.006
[16] Jo?o, R.R., Santos, R.T.P., Marcio, N. and Arandra D.A.G. (2006) Simpósio Ibero-Americano de Catálise. Rio Grande do Sul, 17-22 September 2006.
[17] Umdu, M.T. and Erol, S. (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresource Technology, 100, 2828-2831. doi:10.1016/j.biortech.2008.12.027
[18] Umdu, E.S. (2008) Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. M.S. Thesis, Izmir Institute of Technology, Izmir, 2828-2831.
[19] Mittelbach, M. and Remschmidt, C. (2004) Biodiesel: The comprehensive handbook. Martin Mittelbach, Vienna.
[20] Mittelbach, M. (1996) Diesel fuel derived from vegetable oils, VI: Specifications and quality control of biodiesel. Bioresource Technology, 56, 7-11. doi:10.1016/0960-8524(95)00172-7
[21] Knothe, G. (2002) Structure indices in FA chemistry. How relevant is the iodine value? Journal of the American Oil Chemist’s Society, 9, 847-853. doi:10.1007/s11746-002-0569-4
[22] Knothe, G., Dunn, R.O. and Bagby, M.O. (1997) Bio-diesel: The use of vegetable oils and their derivatives as alternative diesel fuels. In: Saha, B.C. and Woodward, J. Eds., Fuels and Chemicals from Biomass, American Chemical Society, Washington DC. doi:10.1021/bk-1997-0666.ch010
[23] Kyriakidis, N.B. and Katsiloulis, T. (2000) Calculation of iodine value from measurements of fatty acid methyl esters of some oils: comparison with the relevant American oil chemists society method. Journal of the American Oil Chemist’s Society, 77, 1235-1238. doi:10.1007/s11746-000-0193-3
[24] Lin, C.-Y., Lin, H.-A. and Hung, L.-B. (2006) Fuel structure and properties of biodiesel produced by the peroxi- dation process. Fuel, 85, 1743-1749. doi:10.1016/j.fuel.2006.03.010
[25] Bajpai, D. and Tyagi, V.K. (2006) Biodiesel: Source, production, composition, properties and its benefits. Journal of Oleo Science, 55, 487-502. doi:10.5650/jos.55.487
[26] McCormick, R.L., Ratcliff, M., Moens, L. and Lawrence, R. (2007) Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Processing Technology, 88, 651-657. doi:10.1016/j.fuproc.2007.01.006
[27] Park, J.-Y., Kim, D.-K., Lee, J.-P., Park, S.-C., Kim, Y.-J., Lee, J.-S. (2008) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Biore- source Technology, 99, 1196-1203. doi:10.1016/j.biortech.2007.02.017
[28] Dunn, R.O., Bagby, M.O. (1996) Low-temperature filterability properties of alternative diesel fuels from vegeta- ble oils. Liquid fuel and industrial product from renew- able resources. Proceedings of Third Liquid Fuel Confer- ence, Nashville 15-17 September 1996, 95-103.
[29] Dunn, R.O. and Knothe, G. (2001) Alternative diesel fuels from vegetable oils and animal fats. Journal of Oleo Science, 50, 415-426. doi:10.5650/jos.50.415
[30] Knothe, G. and Dunn, R.O. (2001) Oleochemical manufacture and applications. Sheffield Academic Press, Sheffield.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.