Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds

Abstract

Because of increased need to tissue and organ transplantation, tissue engineering (TE) researches have significantly increased in recent years in Iran. The present study explored briefly the advances in the TE approaches in Iran. Through comprehensive search, we explored main TE components researches include cell, scaffold, growth factor and bioreactor conducted in Iran. The field of TE and regenerative medicine in Iran dates back to the early part of the 1990 decade and the advent of stem cell researches. During past two decades, Iran was one of leader in stem cell research in Middle East. The next major step in TE was application and fabrication of scaffolds for TE in the early 2000s with focused on engineering bone and nerve tissue. Iranian researchers extensively used natural scaffolds in their studies and hybridized natural polymers and inorganic scaffolds. There are many universities and government research institutes are conducting active research on tissue-engineering technologies. Limitations to TE in Iran include property design and validation of bioreactors. In conclusion, in the last few years, fields of tissue engineering and regenerative medicine such as stem cell technology and scaffolds have progressed in Iran, but one of the biggest challenges for TE is bioreactors researches.

Share and Cite:

Gharravi, A. , Orazizadeh, M. , Hashemitabar, M. , Ansari-Asl, K. , Banoni, S. , Alifard, A. and Izadi, S. (2012) Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds. Journal of Biomedical Science and Engineering, 5, 217-227. doi: 10.4236/jbise.2012.54029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Lopez, D.A., Mathersm, C.D., Ezzati, M., Jamison, D.T. and Murray, C.J. (2006) Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 367, 1747-1757. doi:10.1016/S0140-6736(06)68770-9
[2] Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A.A., Jarawan, E. and Mathers, C. (2004) World report on road traffic injury prevention Geneva: World Health Organization.
[3] Murray, C.J.L. and Lopez, A.D. (1996) The global burden of disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 Boston: Harvard School of Public Health.
[4] Kopits, E. and Cropperm, M. (2003) Traffic fatalities and economic growth Washington DC. Policy Research Working Paper No. 3035, The World Bank.
[5] Bhalla, K. (2007) Road traffic injury metrics recommended definitions. Harvard University Initiative for Global Health Road Traffic Injury Metrics Group, Cambridge.
[6] Bhalla, K., Naghavi, M., Shahraz, S., Bartels, D. and Murray, C.J. (2009) Building national estimates of the burden of road traffic injuries in developing countries from all available data sources: Iran. Injury Prevention, 15, 150-156. doi:10.1136/ip.2008.020826
[7] Pourrostam, T. and Ismail, A. (2011) Socio-economic consequences of traffic accidents in Iran. Australian Journal of Basic and Applied Sciences, 5, 897-901
[8] Noorbala, A.A. (2010) The organization and management of medical services to injured soldiers across the country and in the battlefields during the Iran-Iraq war. Archives of Iranian medicine, 13, 367-369.
[9] Chapekar, M.S. (2000) Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research, 53, 617-620. doi:10.1002/1097-4636(2000)
[10] Meyer, U., Meyer. T., Handschel, J. and Wiesmann, H.P. (2009) Fundamentals of tissue engineering and regenerative medicine. Leipzig, Springer-Verlag, Berlin.
[11] Langer, R. and Vacanti, J.P. (1993) Tissue engineering. Science, 260, 920-926. doi: 10.1126/science.8493529
[12] Sajjadi, S.M.S. (2008) Shahri Sokhta’s artificial eye, cultural heritage of Sistan & Baluchistan. 1st Edition, Forohar, Tehran.
[13] Miremadi, T. (2010) Stem cell research and technology in Iran—Window of opportunity in the midst of international tension. Review of Policy Research, 27, 699-719. doi:10.1111/j.1541-1338.2010.00467.x
[14] Mirzadeh, H., Mohagheghi, M.A., Ahmadi, H., Mirkhani, H., Amanpour, S. and Salehian, P. (2000) Cartilage tissue engineering for ear as in rabbit model with perforated polyurethane prosthesis: In Vivo Assay. Iranian Polymer Journal, 9, 73-79.
[15] Baharvand, H., Hashemi, S.M., Kazemi Ashtiani, S. and Farrokhi, A. (2006) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. The International journal of developmental biology, 50, 645-652. doi:10.1387/ijdb.052072hb
[16] Karbasi, S. (2006) Evaluation of hydrostatic pressure on metabolism of the articular chondrocytes seeded on bio-degradable polyurethane as tissue engineering scaffold. World Congress on Medical Physics and Biomedical Engineering 2006 IFMBE. Proceedings, 14, 3382-3385.
[17] Eslaminejad, M.B., Mirzadeh, H., Mohamadi, Y. and Nickmahzar, A. (2007) Bone differentiation of marrow derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1, 417- 424. doi:10.1002/term.49
[18] Shariatpanahi, R.E., Orang, F., Emami, SH. and Naimi, T. (2006) Cell growth on tissue-engineering scaffolds prepared by gamma irradiation grafting of N-vinyl-2-pyr-rolidone onto polyvinyl alcohol. Journal of Biomaterials Science. Polymer Edition, 17, 659-667. doi:10.1163/156856206777346322
[19] Shabani, I., Haddadi-Asl, V., Soleimani, M., Seyedjafari, E., Babaeijandaghi F. and Ahmadbeigi, N. (2011) Enhanced infiltration and biomineralization of stem cells on collagen-grafted three-dimensional nanofibers. Tissue Engineering. Part A, 17, 1209-1218. doi:10.1089/ten.tea.2010.0356
[20] Seyedjafari, E., Soleimani, M., Ghaemi, N. and Shabani, I. (2010) Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromole-cules, 11, 3118-3125. doi:10.1021/bm1009238
[21] Pajoum Shariati, S.R., Shokrgozar, M.A., Vossoughi, M. and Eslamifar A (2009) In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold. Iranian Biomedicaal Journal, 13, 169-177.
[22] Hatami, M., Mehrjardi, N.Z., Kiani, S., Hemmesi, K., Azizi, H., Shahverdi, A. and Baharvand, H. (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy, 11, 618-630. doi:10.1080/14653240903005802
[23] Hashemi, S.M., Soleimani, M., Zargarian, S.S., Haddadi-Asl, V., Ahmadbeigi, N., Soudi, S., Gheisari, Y., Hajarizadeh, A. and Mohammadi, Y. (2009) In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly (epsiloncaprolactone) nanofiber scaffolds. Cells Tissues Organs, 190, 135-149. doi: 10.1159/000187716
[24] Nojehdehian, H., Moztarzadeh, F., Baharvand, H., Mehrjerdi, N. Z., Nazarian, H. and Tahriri, M. (2010) Effect of poly-L-lysine coating on retinoic acid-loaded PLGA microspheres in the differentiation of carcinoma stem cells into neural cells. International Journal of Artificial Organs, 33, 721-730.
[25] Baghaban Eslaminejad, M., Taghiyar, L. and Falahi, F. (2009) Quantitative analysis of the proliferation and differentiation of rat articular chondrocytes in alginate 3D culture. Iraniann Biomedical Journal, 13, 153-160.
[26] Nojehdehian, H., Moztarzadeh, F., Baharvand, H., Nazarian, H. and Tahriri, M. (2009) Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid n for nerve tissue engineering: In vitro study. Colloids and Surfaces. B, Biointerfaces, 73, 23-29. doi:10.1016/j.colsurfb.2009.04.029
[27] Timnak, A., Gharebaghi, F.Y., Shariati, R.P., Bahrami, S.H., Javadian, S., Emami S.h.H., and Shokrgozar MA. (2010) Fabrication of nanostructured electrospun collagen scaffold intended for nerve tissue engineering. Journal of Materials Science. Materials in Medicine, 22, 1555-1567. doi:10.1007/s10856-011-4316-5
[28] Azami, M., Samadikuchaksaraei, A. and Poursamar, S.A. (2010) Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. International Journal of Artificial Organs, 33, 86-95.
[29] Ghazanfari, S., Tafazzoli-Shadpour, M. and Shokrgozar, M.A. (2009) Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochemical and Biophysical Research Communications, 388, 601-605. doi:10.1016/j.bbrc.2009.08.072
[30] Sharifi, S., Mirzadeh, H., Imani, M., Atai, M., Bakhshi, R. and Ziaee, F. (2006) Synthesis and characterization of novel injectable, biodegradable and in situ crosslinkable poly(hexamethylene-carbonate-fumarate), poly (hexamethylene carbonate) diacrylate and poly(ethylene glycol fumarate-co-hexamethylene carbonate-fumarate) scaffolds for bone tissue engineering. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 791-794.
[31] Shokrgozar, M.A., Farokhi, M., Rajaei, F., Bagheri, M.H., Azari, S.H., Ghasemi, I., Mottaghitalab, F., Azadmanesh, K. and Radfar, J. (2010) Biocompatibility evaluation of HDPEUHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells. Journal of biomedical materials research. Part A, 95, 1074-1083. doi:10.1002/jbm.a.32892
[32] Mohammadi, M., Shokrgozar, M. A. and Mofid, R. (2007) Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its effect on attached gingiva: A randomized, controlled pilot study. Journal of Periodontology, 78, 1897-1903. doi:10.1902/jop.2007.070083
[33] Homaeigohar, S.S., Shokrgozar, M.A., Javadpour, J., Khavandi, A. and Sadi, A.Y. (2006) Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: A novel orthopedic composite. Journal of Biomedical Materials Research. Part A, 78, 129-138. doi:10.1002/jbm.a.31473
[34] Bakhshandeh, B., Soleimani, M., Ghaemi, N. and Shabani, I. (2011) Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta pharmacologica Sinica, 32, 626-636. doi:10.1038/aps.2011.8
[35] Seyedjafari, E., Soleimani, M., Ghaemi, N. and Sarbolouki, M. N. (2011) Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. Journal of Materials Science. Materials in Medicine, 22, 165-174. doi:10.1007/s10856-010-4174-6
[36] Akrami, H., Soheili, Z.S., Sadeghizadeh, M., Khalooghi, K., Ahmadieh, H., Kanavi, M.R.,Samiei, S. and Pak-ravesh, J. ( 2011) Evaluation of RPE65, CRALBP, VEGF, CD68, and Tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane. Biochemical genetics, 49, 313-322 doi:10.1007/s10528-010-9409-1
[37] Soleimani, M., Nadri, S. and Shabani, I. (2010) Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. The International Journal of Developmental Biology, 54, 1295-1300. doi:10.1387/ijdb.092999ms
[38] Mohajeri, S., Hosseinkhani, H., Ebrahimi, N.G., Nikfarjam, L., Soleimani, M. and Kajbafzadeh, A.M. (2011) Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/ polyethylene terephthalate blend fibers. Tissue Engineering Part A, 16, 3821-3830. doi:10.1089/ten.tea.2009.0520.
[39] Kazemnejad, S., Allameh, A., Soleimani, M., Gharehbaghian, A., Mohammadi, Y, Amirizadehm N. and Jazayery, M. (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology, 24, 278-287. doi:10.1111/j.1440-1746.2008.05530.x
[40] Niknejad, H., Peirovi, H., Ahmadiani, A., Ghanavi, J. and Jorjani, M. (2010) Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. European Cells & Materials, 19, 22-29.
[41] Behnia, H., Khojasteh, A., Soleimani, M., Tehranchi, A., Khoshzaban, A., Keshel, S.H. and Atashi, R. (2009) Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 108, 1-6. doi:10.1016/j.tripleo.2009.03.040
[42] Zaminy, A., Ragerdi, K.I., Barbarestani, M., Hedayatpour, A., Mahmoudi, R. and Farzaneh, N.A. (2008) Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: Melatonin as a differentiation factor. Iranian Biomedical Journal, 12, 133-141.
[43] Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J. and Seifalian A.M. (2011) Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials, 29, 88-99.
[44] Shayesteh, Y.S., Khojasteh, A., Soleimani, M., Alikhasi, M., Khoshzaban, A. and Ahmadbeigi, N. (2008) Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 106, 203-209. doi:10.1016/j.tripleo.2007.12.001
[45] Sharifiaghdas, F., Hamzehiesfahani, N., Moghadasali, R., Ghaemimanesh, F. and Baharvand, H. (2007) Human amniotic membrane as a suitable matrix for growth of mouse urothelial cells in comparison with human peritoneal and omentum membranes. Urology Journal, 4, 71-78.
[46] Ahangari, G., Naderimanesh, H., Hossein-Nezhad, A. and Zouali, M.A. (2008) A novel tissue engineering-based assay for immunological infertility. Scandinavian Journal of Immunology, 68, 463-468. doi:10.1111/j.1365-3083.2008.02160.x
[47] Montazeri, N., Jahandideh, R. and Biazar, E. (2011) Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. International Journal of Nanomedicine, 6, 197-201. doi:10.2147/IJN.S15461
[48] Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.H., Baharvand, H., Kiani, S., Al-Deyab, S.S. and Ramakrishna, S. (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5, 17-35. doi:10.1002/term.383
[49] Asefnejad, A., Behnamghader, A., Khorasani, M.T. and Farsadzadeh, B. (2011) Polyurethane/fluorhydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: Morphological, physical, and mechanical characterization. International Journal of Nanomedicine, 6, 93-100. doi:10.2147/IJN.S13385
[50] Sharifiaghdas, F., Moghadasali, R., Baharvand, H., Hosseini-Moghaddam, S.M. and Mahmoudnejad, N. (2009) Special characteristics of culturing mature human bladder smooth muscle cells on human amniotic membrane as a suitable matrix. Urology Journal, 6, 283-288.
[51] Aboudzadeh, N., Imani, M., Shokrgozar, M.A., Khavandi, A., Javadpour, J., Shafieyan, Y. and Farokhi, M. (2010) Fabrication and characterization of poly(D,L-lactide-coglycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research. Part A, 94, 137-145. doi:10.1002/jbm.a.32673
[52] Zandi, M., Mirzadeh, H., Mayer, C., Urch, H., Eslaminejad, M.B., Bagheri, F. and Mivehchi, H. (2010) Biocompatibility evaluation of nanorod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Journal of Biomedical Materials Research. Part A, 92, 1244-1255. doi:10.1002/jbm.a.32452
[53] Sharifi, S., Imani, M., Mirzadeh, H., Atai, M., Ziaee, F. and Bakhshi, R. (2009) Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonatebased macromers. Journal of Biomedical Materials Research. Part A, 90, 830-843. doi:10.1002/jbm.a.32138
[54] Atala, A. (2007) Engineering tissues, organs and cells. Journal of Tissue Engineering and Regenerative Medicine, 1, 83-96 doi:10.1002/term.18
[55] Khodadadi, L., Shafieyan, S., Sotoudeh, M., Dizaj, A. V., Shahverdi, A., Aghdami, N. and Baharvand, H. (2010) Intra-epidermal injection of dissociated epidermal cell suspension improves vitiligo. Archives of Dermatological Research, 302, 593-599. doi:10.1007/s00403-010-1034-7
[56] Polak, J.M. and Bishop A.E. (2006) Stem cells and tissue engineering: Past, present, and future. Annals of the New York Academy of Sciences, 1068, 352-366 doi:10.1196/annals.1346.001
[57] Watt, F.M and Hogan, B.L.M. (2000) Out of Eden: Stem cells and their niches. Science, 287, 1427-1430 doi: 10.1126/science.287.5457.1427
[58] Biancho, P. and Robey, P.G. (2000) Marrow stromal stem cells. The Journal of Clinical Investigation, 105, 1663-1668. doi:10.1172/JCI10413
[59] Shafiee, A., Seyedjafari, E., Soleimani, M., Ahmadbeigi, N., Dinarvand, P. and Ghaemi, N. (2011) comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnology Letter, 33, 1257-1264. doi:10.1007/s10529-011-0541-8
[60] Ghaedi, M., Soleimani, M., Taghvaie, N. M., Sheikhfatollahi, M., Azadmanesh, K., Lotfi, A.S. and Wu, J. (2011) Mesenchymal stem cells as vehicles for targeted delivery of anti-angiogenic protein to solid tumors. The Journal of Gene Medicine, 13, 171-180. doi:10.1002/jgm.1552
[61] Ghaedi, M., Tuleuova, N., Zern, M.A., Wu, J. and Revzin, A. (2011) Bottom-up signaling from HGFcontaining surfaces promotes hepatic differentiation of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 407, 295-300. doi:10.1016/j.bbrc.2011.03.005
[62] Ahmadbeigi, N., Shafiee, A., Seyedjafari, E., Gheisari, Y., Vassei, M., Amanpour, S., Amini, S., Bagherizadeh, I. and Soleimani, M. (2011) Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Proliferation, 44, 67-74. doi:10.1111/j.1365-2184.2010.00731.x
[63] Dinarvand, P., Hashemi, S.M. and Soleimani, M. (2010) Effect of transplantation of mesenchymal stem cells induced into early hepatic cells in streptozotocin-induced diabetic mice. Biological & Pharmaceutical Bulletin, 33, 1212-1217. doi:10.1248/bpb.33.1212
[64] Taha, M.F. and Hedayati V. (2010) Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell, 42, 211-216. doi:10.1016/j.tice.2010.04.003
[65] Ghasemi-Mobarakeh, L., Morshed, M., Karbalaie, K., Fesharaki, M.A., Nematallahi, M., Nasr-Esfahani, M.H. and Baharvand, H. (2009) The thickness of electrospun poly (epsilon-caprolactone) nanofibrous scaffolds influences cell proliferation. The International Journal of Artificial Organs, 32, 150-158.
[66] Nadri, S., Soleimani, M., Mobarra, Z. and Amini, S. (2008) Expression of dopamine-associated genes on conunctiva stromal-derived human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377, 42342-8. doi:10.1016/j.bbrc.2008.09.148
[67] Mohammadi, Y., Soleimani, M., Fallahi-Sichani, M., Gazme, A., Haddadi-Asl, V., Arefian, E., Kiani, J., Mo-radi, R., Atashi, A. and Ahmadbeigi, N. (2007) Nanofibrous poly(epsiloncaprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. The International Journal of Artificial Organs, 30, 204-211.
[68] Gharibani, P.M., Tiraihi, T. and Arabkheradmand, J. (2010) In vitro differentiation of GABAergic cells from bone marrow stromal cells using potassium chloride as inducer. Restorative Neurology and Neuroscience, 28, 367-377. doi:10.3233/RNN-2010-0539
[69] Baharvand, H., Mehrjardi, N.Z., Hatami, M., Kiani, S., Rao, M. and Haghighi, M.M. (2007) Neural differentiation from human embryonic stem cells in a defined adherent culture condition. The International Journal of Developmental Biology, 51, 371-378. doi: 10.1387/ijdb.072280hb
[70] ASTM F2150-07 (2007) Standard guide for characterization and testing of biomaterial scaffolds used in tissue-engineered medical products.
[71] Chen, G., Ushida, T. and Tateishi, T. (2002) Scaffold design for tissue engineering. Macromolecular Bioscience, 2, 67-77 doi:10.1002/1616-5195(20020201)
[72] Hersel, U., Dahmen, C. and Kessler H. (2003) RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24, 4385-4415. doi:10.1016/S0142-9612(03)00343-0
[73] Chan, B.P. and Leong, K.W. (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17, S467-S479. doi:10.1007/s00586-008-0745-3
[74] Heidarkhan, Tehrani, A., Zadhoush, A., Karbasi, S. and Sadeghi-Aliabadi, H. (2010) Scaffold percolative efficiency: In vitro evaluation of the structural criterion for electrospun mats. Journal of Materials Science. Materials in Medicine, 21, 2989-2998. doi:10.1007/s10856-010-4149-7
[75] Shahhosseini, R., Asadifard, F., Enayatollahi, M., Shapourgan, M., Haghjo R. and Heidari Keshel, S. (2010) Nanometric grafting of poly(N-isopropylacrylamide) onto polystyrene film by different doses of gamma radiation. International Journal of Nano Dimension, 1, 77-88.
[76] Biazar, E., Montazeri, N., Pourshamsian, K., Asadifard, F., Ghorbanalinezhad, E., Heidari Keshel. S., Hashemi, M., Rahbar, S. and Majdi, A. (2010) Harvesting epithelial cell sheet based on thermo-sensitive hydrogel. Journal of Paramedical Sciences, 1, 27-33.
[77] Babaeijandaghi, F., Shabani, I., Seyedjafari, E., Naraghi, Z.S., Vasei, M., Haddadi-Asl, V., Hesari, K.K. and Soleimani, M. (2010) Accelerated epidermal regeneration and improved dermal reconstruction achieved by polyethersulfone nanofibers. Tissue engineering. Part A, 16, 3527-3536. doi:10.1089/ten.tea.2009.0829.
[78] Hajiali, H., Karbasi, S., Hosseinalipour, M. and Rezaie, H.R. (2010) Preparation of a novel biodegradable nano-composite scaffold based on poly(3-hydroxybutyrate)/ bioglass nanoparticles for bone tissue engineering. Journal of materials science. Materials in Medicine, 21, 2125- 2132. doi:10.1007/s10856-010-4075-8
[79] Eslaminejad, M.B., Mirzadeh, H., Mohamadi, Y. and Nickmahzar, A. (2007) Bone differentiation of marrowderived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1, 417- 4124. doi:10.1002/term.49
[80] Chung, C. and Burdick, J.A. (2008) Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60, 243-262 doi:10.1016/j.addr.2007.08.027
[81] Orazizadeh, M., Lee, H.S., Groenendijk, B., Sadler, S.J., Wright, M.O., Lindberg, F.P. and Salter, DM. (2008) CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis Research Therapy, 10, R4. doi:10.1186/ar2350
[82] Orazizadeh, M., Cartlidge, C., Wright, M.O., Millward-Sadler, S.J., Nieman, J., Halliday, B.P., Lee, H.S. and Salter, D.M. (2006) Mechanical responses and integrin associated protein expression by human ankle chondro-cytes. Biorheology, 43, 249-258.
[83] Orazizadeh, M. and Salter, D.M. (2007) The expression of signal regulatory protein-alpha in normal and osteoarthritic human articular cartilage and its involvement in chondrocyte mechano-transduction response. Iranian Biomedical Journal, 11, 119-124.
[84] Makoolati, Z., Movahedin, M. and Forouzandeh-Moghadam, M. (2011) Bone morphogenetic protein 4 is an efficient inducer for mouse embryonic stem cell differentiation into primordial germ cell. In Vitro Cellular & Developmental Biology. Animal, 47, 391-398 doi: 10.1007/s11626-011-9404-9
[85] Freed, L.E. and Vunjak-Novakovic, G. (2000) Tissue engineering bioreactors. In: Lanza, R.P., Langer, R. and Vacanti, J., Eds., Principles of Tissue Engineering, Academic Press, San Diego, 143-156.
[86] Golmakany, N., Rasaee, M.J., Furouzandeh, M., Sho-jaosadati, S.A., Kashanian, S. and Omidfar, K. (2005) Continuous production of monoclonal antibody in a packed-bed bioreactor. Biotechnology and Applied Biochemistry, 41, 273-278. doi:10.1042/BA20040121
[87] Amoabediny, G., Abbas, M. P. and Büchs, J. (2010) Determination of CO2 sensitivity of microorganisms in shaken bioreactors. II. Novel online monitoring method. Biotechnology and applied biochemistry, 57, 167-175. doi:10.1042/BA20100212
[88] Amoabediny, G. and Büchs, J. (2010) Determination of CO2 sensitivity of micro-organisms in shaken bioreactors. I. Novel method based on the resistance of sterile closure. Biotechnology and Applied Biochemistry, 57, 157-166. doi:10.1042/BA20100211
[89] Amoabediny, G., Ziaie-Shirkolaee, Y. and Büchs, J. (2009) Development of an unsteady-state model for a biological system in miniaturized bioreactors. Biotechnology and Applied Biochemistry, 54, 163-170. doi:10.1042/BA20090141

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.