Comparison of the Thermal Properties of Asbestos and Polyvinylchloride (PVC) Ceiling Sheets


This work investigates the thermal properties of polyvinyl chloride and asbestos ceiling sheet. We have studied the thermal properties of these materials in terms of the thermal conductivity (TC), thermal resistivity (TR), thermaldiffusivity, thermalabsorptivity, and specific heat capacity (SHC). With the view to establishing their suitability as ceiling materials in building designs for tropical regions. The result showed that thermal conductivity, thermal resistivity, thermal absorptivity, thermal diffusivity and specific heat capacity values of PVC and asbestos ceiling sheets falls within the range of good insulating materials like pine fibre-board and oak wood. With these properties and further improvement, they possess properties that can be harnessed for possible usage as ceiling materials.

Share and Cite:

M. Onyeaju, E. Osarolube, E. Chukwuocha, C. Ekuma and G. Omasheye, "Comparison of the Thermal Properties of Asbestos and Polyvinylchloride (PVC) Ceiling Sheets," Materials Sciences and Applications, Vol. 3 No. 4, 2012, pp. 240-244. doi: 10.4236/msa.2012.34035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. E. Etuk, L. E. Akpabio and K. E. Akpabio, “Deter- mination of the Thermal Propertieies of Cocos Nucifera Trunk for Predicting Temperature Variation with Its Thickness,” The Arabian Journal for Science and Engi- neering, Vol. 30, No. 1A, pp. 121-126.
[2] B. Y. Lattimer and J. Ouellette, “Properties of Composite Materials for Thermal Analysis Involving Fires,” Com- posites: Part A, Vol. 37, No. 7, 2006, pp. 1068-1081. doi:10.1016/j.compositesa.2005.01.029
[3] C. Michels, R. Lamberts and S. Guths, “Theoretical/Ex- perimental Comparison of Heat Flux Reduction in Roofs Achieved through the Use of Reflective Thermal Insula- tors,” Energy and Buildings, Vol. 40, No. 4, 2008, pp. 438-444. doi:10.1016/j.enbuild.2007.03.012
[4] J. S. Pastuszka, “Emission of Airborne Fibers from Me- chanically Impacted Asbestoscement Sheets and Concen- tration of Fibrous Aerosol in the Home Environment in Upper Silesia, Poland,” Journal of Hazardous Materials, Vol. 162, No. 2-3, 2009, pp. 1171-1177. doi:10.1016/j.jhazmat.2008.06.045
[5] I. U. S. Demirdag, “Investigation of the Relation between the Specific Heat Capacity and Material Properties of Some Natural Building and Facing Stones,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, No. 5, 2006, pp. 831-835. doi:10.1016/j.ijrmms.2005.12.003
[6] S. X. Xua, Y. Lia and Y. P. Fengb, “Study of Tempera- ture Profile and Specific Heat Capacity in Temperature Modulated DSC with a Low Sample Heat Diffusivity,” Thermochimica Acta, Vol. 360, No. 2, 2000, pp. 131-140. doi:10.1016/S0040-6031(00)00564-5
[7] S. Zhua, C. Lib, C. H. Su, B. Lin, H. Ban, R. N. Scripa and S. L. Lehoczky, “Thermal Diffusivity, Thermal Con- ductivity, and Specific Heat Capacity Measurements of Molten Tellurium,” Journal of Crystal Growth, Vol. 250, No. 1-2, 2003, pp. 269-273. doi:10.1016/S0022-0248(02)02250-9
[8] Y. Zhang, K. Lin, Q. Zhang and H. Di, “Ideal Thermo- physical Properties for Free-Cooling (or Heating) Build- ings with Constant Thermal Physical Property Material,” Energy and Buildings, Vol. 38, No. 10, 2006, pp. 1164- 1170. doi:10.1016/j.enbuild.2006.01.008
[9] K. J. Kontoleon and D. K. Bikas, “The Effect of South Wall’s Outdoor Absorption Coefficient on Time Lag, Decrement Factor and Temperature Variations,” Energy and Buildings, Vol. 39, No. 9, 2007, pp. 1011-1018. doi:10.1016/j.enbuild.2006.11.006
[10] M. Wang, J. He, J. Yu and N. Pan, “Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fi- brous Material,” International Journal of Thermal Sci- ences, Vol. 46, No. 9, 2007, pp. 848-855. doi:10.1016/j.ijthermalsci.2006.11.006

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.