Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite

Abstract

We report on a new type of amperometric glucose biosensor that was made by integration of glucose oxidase (GOD) with palladium nanoparticles/reduce graphene oxide (Pd/RGO) nanocomposite. The Pd/RGO was prepared by a one-step reduction method in which the palladium nanoparticles and the reduced graphene oxide (RGO) were simultaneously accomplished from the reduction of dispersed solution of PdCl2 and graphite oxide (GO) with hydrazine. The asprepared nanocomposite exhibits favorable electrocatalytic activities towards the oxidation of H2O2, which makes it a good platform for the construction of the glucose biosensor. The analytical performance of the glucose biosensor is fully evaluated. It shows good analytical properties in terms of a short response time (3 s), high sensitivity (14.1 μA/mM), and low detection limit (0.034 mM). In addition, the effects of pH value, applied potential, electroactive interference and the stability of the biosensor were discussed as well.

Share and Cite:

N. Cheng, H. Wang, X. Li and L. Zhu, "Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite," American Journal of Analytical Chemistry, Vol. 3 No. 4, 2012, pp. 312-319. doi: 10.4236/ajac.2012.34043.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, “Graphene/AuNPs/Chitosan Nanocomposites Film for Glucose Biosensing,” Biosensors and Bioelectronics, Vol. 25, No. 5, 2010, pp. 1070-1074. doi:10.1016/j.bios.2009.09.024
[2] Y. Lin, F. Lu, Y. Tu and Z. Ren, “Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles,” Nano Letters, Vol. 4, No. 2, 2004, pp. 191-195. doi:10.1021/nl0347233
[3] H. Wu, W. Cao, G. Liu, Y. Wen, H. Yang and S. Yang, “In Situ Growth of Copper Nanoparticles on Multiwalled Carbon Nanotubes and Their Application as Non-Enzymatic Glucose Sensor Materials,” Electrochimica Acta, Vol. 55, No. 11, 2010, pp. 3734-3740. doi:10.1016/j.electacta.2010.02.017
[4] Y. Liu, D. Zeng, Z. Miao and L. Dai, “Biocompatible Graphene Oxide-Based Glucose Biosensors,” Langmuir, Vol. 26, No. 9, 2010, pp. 6158-6160. doi:10.1021/la100886x
[5] J. Wang and M. Musameh, “Carbon Nanotubes Doped Polypyrrole Glucose Biosensor,” Analytica Chimica Acta, Vol. 539, No. 1-2, 2005, pp. 209-213. doi:10.1016/j.aca.2005.02.059
[6] L. Zhu, R. Yang, J. Zhai and C. Tian, “Bioenzymatic Glu-cose Biosensor Bansed on Co-Immobilization of Peroxi-dase and Glucose Oxidase on a Carbon Nanotubes Electrode,” Biosensors and Bioelectronics, Vol. 23, No. 4, 2007, pp. 528-535. doi:10.1016/j.bios.2007.07.002
[7] K. Zhou, Y. Zhu, X. Yang and C. Li, “Electrcatalytic Oxi- dation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite,” Electroanalysis, Vol. 22, No. 3, 2010, pp. 259-264. doi:10.1002/elan.200900321
[8] C. Shan, H. Yang, J. Song, D. Han, A. Invaska and L. Niu, “Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene,” Analytical Chemistry, Vol. 81, No. 6, 2009, pp. 2378-2382. doi:10.1021/ac802193c
[9] H. Tang, J. Chen, S. Yao, L. Nie, G. Deng and Y. Kuang, “Amperometric Glucose Biosensor Based on Adsorption of Glucose Oxidase at Platinum Nanoparticle-Modified Carbon Nanotube Electrode,” Analytical Biochemistry, Vol. 331, No. 1, 2004, pp. 89-97.
[10] G. G. Wallace, M. Smyth and H. Zhao, “Conducting Electroactive Polymer-Based Biosensors,” Trends in Analytical Chemistry, Vol. 18, No. 4, 1999, pp. 245-251. doi:10.1016/S0165-9936(98)00113-7
[11] K. I. Ozoemena and T. Nyokong, “Novel Amperometric Glucose Biosensor Based on an Ether-Linked Cobalt(II) Phthalocyanine-Cobalt(II) Tetraphenylporohyrin Pentamet as a Redox Mediator,” Electrochimica Acta, Vol. 51, No. 24, 2006, pp. 5131-5136. doi:10.1016/j.electacta.2006.03.055
[12] J. Ye, Y. Wen, W. Zhang, H. Cui, G. Xu and F. S. Sheu, “Electrochemical Biosensing Platforms Using Phthalocya-nine-Functionalized Carbon Nanotube Electrode,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 89-96. doi:10.1002/elan.200403124
[13] L. Zhu, J. Zhai, Y. Guo, C. Tian and R. Yang, “Amper-ometric Glucose Biosensors Based on Integration of Glucose Oxidase onto Prussian Blue/Carbon Nanotubes Na- nocomposite Electrodes,” Electroanalysis, Vol. 18, No. 18, 2006, pp. 1842-1846. doi:10.1002/elan.200603594
[14] L. Zhu, R. Yang, J. Zhai and C. Tian, “Bienzymatic Glucose Biosensor Based on Co-Immobilization of Peroxidase and Glucose Oxidase on a Carbon Nanotubes343 Electrode,” Biosensors and Bioelectronics, Vol. 23, No. 4, 2007, pp. 528-535. doi:10.1016/j.bios.2007.07.002
[15] S. Hrapovic, Y. Liu, K. B. Male and J. H. T. Luong, “Electrochemical Biosensing Platforms Using Platinum Nano-particles and Carbon Nanotubes,” Analytical Chemistry, Vol. 76, No. 4, 2004, pp. 1083-1088. doi:10.1021/ac035143t
[16] N. German, A. Ramanaviciene, J. Voronovic and A. Ramanavicius, “Glucose Biosensor Based on Graphite Modified with Oxidase and Colloidal Gold Nanoparticles,” Microchimica Acta, Vol. 168, No. 3-4, 2010, pp. 221- 229. doi:10.1007/s00604-009-0270-z
[17] J. C. Claussen, A. D. Franklin, A. Haque, D. M. Porterfield and T. S. Fisher, “Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks,” ACS Nano, Vol. 3, No. 1, 2009, pp. 37-44. doi:10.1021/nn800682m
[18] S. A. Miscoria, G. D. Barrera and G. A. Rivas, “Analytical Performance of Glucose Biosensor Prepared by Immobilization of Glucose Oxidase and Different Metals into a Carbon Paste Electrode,” Electroanalysis, Vol. 14, No. 14, 2002, pp. 981-987. doi:10.1002/1521-4109(200208)14:14<981::AID-ELAN981>3.0.CO;2-1
[19] X. Jiang, Y. Wu, X. Mao, X. Cui and L. Zhu, “Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Platinum Nanoparticles/Ordered Mes-oporous Carbon Nanocomposite,” Sensors and Actuators B: Chemical, Vol. 153, No. 1, 2011, pp. 158-163. doi:10.1016/j.snb.2010.10.023
[20] Y. Wang, Y. Li, L. Tang, J. Lu and J. Li, “Application of Graphene-Modified for Selective Detection of Dopamine,” Electrochemistry Communications, Vol. 11, No. 4, 2009, pp. 889-892. doi:10.1016/j.elecom.2009.02.013
[21] Z. Liu, Y. Xu, X. Zhang, X. Zhang, Y. Chen and J. Tian, “Prophyrin and Fullerene Cocalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties,” Journal of Physical Chemistry B, Vol. 113, No. 29, 2009, pp. 9681-9686. doi:10.1021/jp9004357
[22] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang and S. Dong, “Controlled Synthesis of large-Area and Parrerned Electrochemically Reduced Graphene Oxide Films,” Journal of European Chemistry, Vol. 15, No. 25, 2009, pp. 6116-6120. doi:10.1002/chem.200900596
[23] S. Wang. P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong and K. P. Loh, “High Mobility, Printable, and Solution-Processed Graphene Electronics,” Nano Letters, Vol. 10, No. 1, 2010, pp. 92-98. doi:10.1021/nl9028736
[24] G. Eda, G. Fanchini and M. N. Chhowalla, “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Trans-parent and Flexible Electronic Material,” Nanotechnology, Vol. 3, No. 5, 2008, pp. 270-274.
[25] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, “A Graphene-Based Electrochemical Sensor for Sensitive Detection of Paracetamol,” Talanta, Vol. 81, No. 3, 2010, pp. 754-759. doi:10.1016/j.talanta.2010.01.009
[26] Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim and H. Kim, “Electrochemical Detection of Do- pamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes,” Biosensors and Bioelectronics, Vol. 25, No. 10, 2010, pp. 2366-2369. doi:10.1016/j.bios.2010.02.031
[27] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, “Electrochemical Determination of NADH and Etha-nol Based on Ionic Liquid-Functionalized Graphene,” Bio-sensors and Bioelectronics, Vol. 25, No. 6, 2010, pp. 1504-1508. doi:10.1016/j.bios.2009.11.009
[28] C. N. R. Rao, A. K. Subrahmanyam and A. Govindaraj, “Graphene: The New Two-Dimensional Nanomaterial,” Angewandte Chemie, Vol. 48, No. 42, 2009, pp. 7752-7777. doi:10.1002/anie.200901678
[29] Z. Liu, J. Y. Lee, W. Chen, M. Han and L. Gan, “Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported Pt Ru Nanoparticles,” Langmuir, Vol. 20, No. 1, 2004, pp. 181- 187. doi:10.1021/la035204i
[30] M. S. Goh and M. Pumera, “The Electrochemical Re- sponse of Graphene Sheets Is Independent of the Number of Layers from a Single Graphene Sheets to Multilayer Stacked Graphene Platelets,” Chemistry—An Asian Journal, Vol. 5, No. 11, 2010, pp. 2355-2357. doi:10.1002/asia.201000437
[31] M. S. Goh and M. Pumera, “Single-, Few-, and Multi-layer Graphene Not Exhibiting Significant Advantages over Graphite Micoropartcles in Electroanalysis,” Analytical Chemistry, Vol. 82, No. 19, 2010, pp. 8367-8370. doi:10.1021/ac101996m
[32] P. Santhosh, K. M. Manesh, S. Uthayakumar, S. Uthaya-kumar, S. Komathi, A. I. Gopalan and K. P. Lee, “Fabrication of Enzymatic Glucose Biosensor Based on Palladium Nanoparticles Dispersed onto Poly (3,4-Ethylene- dioxythiophene) Nanofibers,” Bioelectrochemistry, Vol. 75, No. 1, 2009, pp. 61-66. doi:10.1016/j.bioelechem.2008.12.001
[33] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang and S. Dong, “Controlled Synthesis of Large-Area and Parrerned Electrochemically Reduced Graphene Oxide Films,” Journal of European Chemistry, Vol. 15, No. 25, 2009, pp. 6116-6120. doi:10.1002/chem.200900596
[34] Z. Liu, Y. Xu, X. Zhang, X. Zhang, Y. Chen and J. Tian, “Prophyrin and Fullerene Cocalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties,” Journal of Physical Chemistry B, Vol. 113, No. 29, 2009, pp. 9681-9686. doi:10.1021/jp9004357
[35] W. J. Ho, C. J. Yuan and O. Reiko, “Application of SiO2- Poly (Dimethylsiloxane) Hybrid Material in the Fabrica- tion of Ampermnetric Biosensor,” Analyca Chimica Acta, Vol. 572, No. 2, 2009, pp. 248-252. doi:10.1016/j.aca.2006.05.022
[36] J. C. Claussen, A. D. Franklin, A. U. Haque, D. M. Porterfield and T. Fisher, “Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks,” ACS Nano, Vol. 3, No. 1, 2009, pp. 37-44.
[37] F. Xiao, F. Zhao, D. Mei, Z. Mo and B. Zeng, “Nonenzymatic Glucose Sensor Based on Ultrasonic-Electrode- position of Bimetallic PtM (M = Ru, Pd, and Au) Nano-particles on Carbon Nanotubes-Ionic Liquid Composite Film,” Biosensors and Bioelectronics, Vol. 24, No. 12, 2009, pp. 3481-3486. doi:10.1016/j.bios.2009.04.045
[38] S. H. Lim, J. Wei, J. Lin, Q. Li and J. KuaYou, “A Glu- cose Biosensor Based on Electrodeposition of Palladium Nanoparticles and Glucose Oxidase onto Nafion-Solubilized Carbon Nanotube Electrode,” Biosensors and Bio-electronics, Vol. 20, No. 12, 2005, pp. 2341-2346. doi:10.1016/j.bios.2004.08.005
[39] R. A. Kamin and G. S. Wilson, “Rotating Ring-Disk Enzyme Electrode for Biocatalysis Kinetic Studies and Characterization of the immobilized Enzyme Layer,” Analytical Chemistry, Vol. 52, No. 8, 1980, pp. 1198-1205. doi:10.1021/ac50058a010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.