Enhancement of Ferromagnetic Ordering Curie Temperature in N-Doped MgO under Hydrostatic Pressure


We have explored the magnetic properties of Nitrogen doped cubic MgO using the full potential linearized augmented plane wave (FP-LAPW) method. The unit cell has 128 atoms, and two Nitrogen atoms are placed in the positions of oxygen sites. This corresponds to 3.125% doping concentration. Our calculations predict that the ferromagnetic state, with a magnetic moment of about 1.0 μB per Nitrogen-dopant, is more favorable in energy than the nonmagnetic state, and the ferromagnetic correlations are influenced by the impurity bound state. The magnetic moment mainly arises from p orbital of Nitrogen which substitutes the Oxygen atom, with a little contribution from the Oxygen atoms surrounding Nitrogen atom. The resulting band structure and densities of states agree well with the recent theoretical works. The ferromagnetic ordering temperatures obtained from DFT simulations have been given in detail. Our results show that the pressure enhances the temperature in MgO:N.

Share and Cite:

A. Mir, B. Bekkouche, A. Boukortt, S. Kacimi, M. Djermouni and A. Zaoui, "Enhancement of Ferromagnetic Ordering Curie Temperature in N-Doped MgO under Hydrostatic Pressure," Modeling and Numerical Simulation of Material Science, Vol. 2 No. 2, 2012, pp. 37-42. doi: 10.4236/mnsms.2012.22004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Elfimov, S. Yunoki and G. A. Sawatzky, “Possible Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials,” Physical Review Letters, Vol. 89, No. 21, 2002, pp. 216403-216406. doi:10.1103/PhysRevLett.89.216403
[2] C. D. Pemmaraju and S. Sanvito, “Ferromagnetism Dri- ven by Intrinsic Point Defects in HfO2,” Physical Review Letters, Vol. 94, No. 21, 2005, pp. 217205-217208. doi:10.1103/PhysRevLett.94.217205
[3] I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H.-J. Lin, C. T. Chen, R. Liang and G. A. Sawatzky, “Magnetizing Oxides by Substi-tuting Nitrogen for Oxy- gen,” Physical Review Letters, Vol. 98, No. 13, 2007, pp. 137202-137205. doi:10.1103/PhysRevLett.98.137202
[4] V. Pardo and W. E. Pickett, “Magnetism from 2p States in Alkaline Earth Monoxides: Trends with Varying N impurity Concentration,” Physical Review B, Vol. 78, No. 13, 2008, pp. 134427-134431. doi:10.1103/PhysRevB.78.134427
[5] K. Kenmochi, M. Seike, K. Sato, A. Yanase and H. Katayama-Yoshida, “A New Class of Diluted Ferromagnetic Semiconductors based on CaO without Transition Metal Elements,” Japanese Journal of Applied Physics, Vol. 43, No. 7A, 2004, pp. 934-936. doi:10.1143/JJAP.43.L934
[6] K. Kenmochi, V. A. Dinh, K. Sato, A. Yanase and H. Katayama-Yoshida, “Materials Design of Transparent and Half-Metallic Ferromagnets of MgO, SrO and BaO without Magnetic Elements,” Journal of the Physical Society of Japan, Vol. 73, No. 11, 2004, pp. 2952-2954. doi:10.1143/JPSJ.73.2952
[7] V. Sharma, J. E. Lowther, “Ferromagnetism in Nitrogen Doped Magnesium Oxide: A First Principle Study,” Journal of Nano- and Electronic Physics, Vol. 3, No. 1, 2011, pp. 453-459.
[8] B. Gu, N. Bulut, T. Ziman and S. Maekawa, “Possible d0 Ferromagnetism in MgO Doped with Nitrogen,” Physical Review B, Vol. 79, No. 2, 2008, pp. 024407-024413. doi:10.1103/PhysRevB.79.024407
[9] H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler and P. Kratzer, “Magnetism in C- or N-doped MgO and ZnO: A Density-Functional Study of Impurity Pairs,” Physical Review Letters, Vol. 105, No. 26, 2010, pp. 267203-267206. doi:10.1103/PhysRevLett.105.267203
[10] M. Pesci, F. Gallino, C. D. Valentin and G. Pacchioni, “Nature of Defect States in Nitrogen-Doped MgO,” Journal of Physical Chemistry C, Vol. 114, No.2, 2010, pp. 1350-1356. doi:10.1021/jp9097556
[11] J. M. D. Coey, “d0 Ferromagnetism,” Solid State Sciences, Vol. 7, No. 6, 2005, pp. 660-667. doi:10.1016/j.solidstatesciences.2004.11.012
[12] J. I. Beltrán, C. Monty, Ll. Balcells and C. Martínez-Boubeta, “Possible d0 Ferromagnetism in MgO,” Solid State Communications, Vol. 149, No. 39-40, 2009, pp. 1654-1657. doi:10.1016/j.ssc.2009.06.044
[13] K. S. Yang, R. Q. Wu, L. Shen, Y. P. Feng, Y. Dai and B. B. Huang, “Origin of d0 Magnetism in II-VI and III-V Semiconductors by Substitutional Doping at Anion Site,” Physical Review B, Vol. 81, No. 12, 2010, pp. 125211-125215. doi:10.1103/PhysRevB.81.125211
[14] A. Droghetti, C. D. Pemmaraju and S. Sanvito, “Pre- dicting d0 Magnetism: Self-Interaction Correction Sche- me,” Physical Review B, Vol. 78, No. 14, 2008, pp. 140404(R)-140407(R). doi:10.1103/PhysRevB.78.140404
[15] T. Makarova and F. Palacio, “Carbon-Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials,” Elsevier, Ams- terdam, 2006.
[16] M. Venkatesan, C. B. Fitzgerald and J. M. D. Coey, “Thin Films: Unexpected Magnetism in a Dielectric Oxide,” Nature, Vol. 430, No. 630, 2004, p. 630. doi:10.1038/430630a
[17] H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van and J. H. Yin, “Room- Temperature Ferromagnetism in Carbon-Doped ZnO,” Physical Review Letters, Vol. 99, No. 12, 2007, pp. 127201-127204. doi:10.1103/PhysRevLett.99.127201
[18] G. Bouzerar and T. Ziman, “Model for Vacancy-Induced d0 Ferromagnetism in Oxide Compounds,” Physical Review Letters, Vol. 96, No. 20, 2006, pp. 207602-207605. doi:10.1103/PhysRevLett.96.207602
[19] N. M. Souza-Neto, D. Haskel, Y.-C. Tseng and G. Lapertot, “Pressure-Induced Electronic Mixing and Enhancement of Ferromagnetic Ordering in EuX (X = Te, Se, S, O) Magnetic Semiconductors,” Physical Review Letters, Vol. 102, No. 5, 2009, pp. 057206-057209. doi:10.1103/PhysRevLett.102.057206
[20] L. Bergqvist, B. Belhadji, S. Picozzi and P. H. Dederichs, “Volume Dependence of the Curie Temperatures in Diluted Magnetic Semiconductors,” Physical Review B, Vol. 77, No. 1, 2008, pp. 014418-014424. doi:10.1103/PhysRevB.77.014418
[21] I. N. Goncharenko and I. Mirebeau, “Ferromagnetic Inter- actions in EuS and EuSe Studied by Neutron Diffraction at Pressures up to 20.5 GPa,” Physical Review Letters, Vol. 80, No. 5, 1998, pp. 1082-1085 doi:10.1103/PhysRevLett.80.1082
[22] J. Kunes, W. Ku and W. E. Pickett, “Exchange Coupling in Eu Monochalcogenides from First Principles (Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties),” Journal of the Physical Society of Japan, Vol. 74, No. 5, 2005, pp. 1408-1411. doi:10.1143/JPSJ.74.1408
[23] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, “WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties,” 2th Edition, Vienna University of Technology, Vienna, 2001.
[24] E. Sj?stedt, L. Nordstrom and D. J. Singh, “An Alternative Way of Linearizing the Augmented Plane-Wave Method,” Solid State Communication, Vol. 114, No. 1, 2000, pp. 15-20. doi:10.1016/S0038-1098(99)00577-3
[25] J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review B, Vol. 45, No. 23, 1992, pp. 13244-13249 doi:10.1103/PhysRevB.45.13244
[26] F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proceedings of the National Aca- demy of Sciences of USA, Vol. 30, 1944, pp. 244-247. doi:10.1073/pnas.30.9.244
[27] H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B, Vol. 13, No. 12, 1976, pp. 5188-5192. doi:10.1103/PhysRevB.13.5188
[28] P. E. Bl?chl, O. Jepsen and O. K. Anderson. “Improved Tetrahedron Method for Brillouin-Zone Integrations,” Physical Review B, Vol. 49, No. 23, 1994, pp. 16223- 16233. doi:10.1103/PhysRevB.49.16223
[29] S. Speziale, C.-S. Zha, T. S. Duffy, R. J. Hemley and H.- K. Mao, “Quasi-Hydrostatic Compression of Magnesium Oxide to 52 GPa: Implications for the Pressure- Volume-Temperature Equation of State,” Journal of Geophysical Research, Vol. 106, No. B1, 2001, 515-528. doi:10.1029/2000JB900318
[30] R. C. Whited, C. J. Flaten and W. C. Walker, “Exciton thermoreflectance of MgO and CaO,” Solid State Com- munication, Vol. 13, No. 11, 1973, pp 1903-1905. doi:10.1016/0038-1098(73)90754-0
[31] J. Kudrnovsky, I. Turek, V. Drchal, F. Máca, P. Weinberger and P. Bruno, “Exchange Interactions in III-V and Group-IV Diluted Magnetic Semiconductors,” Physical Review B, Vol. 69, No. 11, 2004, pp. 115208-11218. doi:10.1103/PhysRevB.69.115208
[32] F. Máca, J. Kudr-novsky, V. Drchal and G. Bouzerar, “Magnetism without Magnetic Impurities in ZrO2 Oxide,” Applied Physics Letters, Vol. 92, No. 18-20, 2008, pp. 212503-212505. doi:10.1063/1.293685

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.