Predicting Stem Windthrow Probability in a Northern Hardwood Forest Using a Wind Intensity Bio-Indicator Approach


Unlike fire or insect outbreaks, for which a suppression program can be implemented, it is impossible to prevent a windstorm event or stop it while it is occurring. Reducing stand susceptibility to windstorms requires a good understanding of the factors affecting this susceptibility. Distinct species- and size-related differences in stem windthrow susceptibility are difficult to obtain because it is impossible to distinguish their relative effects from those of wind intensity. Using a damage assessment database (60 20-metre radius plots) acquired after an exceptional wind storm in Western Quebec in 2007, we developed an approach in which proportions of windthrown sugar maple poles were used as bio-indicators of wind intensities affecting the plots. We distinguished between single and interactive effects of wind intensity, species, stem size, and local basal area on stem windthrow susceptibility. The best logistic regression model predicting stem windthrow included the wind intensity bio-indicator, species, basal area, and the species by diameter at breast height (DBH, 1.3 m) interaction. Stem windthrow probability generally increased with DBH and decreased with basal area. Species wind-firmness was ordered as: yellow birch > sugar maple = eastern hemlock = American beech > ironwood > basswood = other hardwoods = other softwoods. Our method remained an indirect method of measuring wind intensity and its real test would require a comparison with anemometer measurements during a windstorm. Despite its indirect nature, the method is both simple and ecologically sound. Hence, it opens the door to conducting similar windthrow studies in other ecosystems.

Share and Cite:

Nolet, P. , Doyon, F. & Bouffard, D. (2012). Predicting Stem Windthrow Probability in a Northern Hardwood Forest Using a Wind Intensity Bio-Indicator Approach. Open Journal of Forestry, 2, 77-87. doi: 10.4236/ojf.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: Problems, prevalence, and an alternative. Journal of Wildlife Management, 64, 913-923. doi:10.2307/3803199
[2] Anderson, D. R., Link, W. A., Johnson, D. H., & Burnham, K. P. (2001). Suggestions for presenting the results of data analyses. Journal of Wildlife Management, 65, 373-378. doi:10.2307/3803088
[3] Boose, E. R., Chamberlin, K. E., & Foster, D. R. (2001). Landscape and regional impacts of hurricanes in New England. Ecological Monographs, 71, 27-48. doi:10.1890/0012-9615(2001)071[0027:LARIOH]2.0.CO;2
[4] Bormann, F. H., & Likens, G. E. (1979). Catastrophic disturbance and the steady state in northern hardwood forests. American Scientist, 67, 660-669.
[5] Canham, C. D., & Loucks, O. L. (1984). Catastrophic windthrow in the presettlement forests of Wisconsin. Ecology, 65, 803-809. doi:10.2307/1938053
[6] Canham, C. D., Papaik, M. J., & Latty, E. F. (2001). Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Canadian Journal of Forest Research, 31, 1-10. doi:10.1139/x00-124
[7] Clinton, B. D., & Baker, C. R. (2000). Catastrophic windthrow in the southern Appalachians: Characteristics of pits and mounds and initial vegetation responses. Forest Ecology and Management, 126, 51-60. doi:10.1016/S0378-1127(99)00082-1
[8] Doyon, F., Bouchard, A., & Gagnon, D. (1998). Tree productivity and successional status in Québec northern hardwoods. Ecoscience, 5, 222-231.
[9] Environment Canada (2011). Climate data online.
[10] Everham, E. M. I., & Brokaw, N. V. L. (1996). Forest damage and recovery from catastrophic wind. Botanical Review, 62, 113-185. doi:10.1007/BF02857920
[11] Forget, E., Nolet, P., Doyon, F., Delagrange, S., & Jardon, Y. (2007). Ten-year response of northern hardwood stands to commercial selection cutting in southern Quebec, Canada. Forest Ecology and Management, 242, 764-775. doi:10.1016/j.foreco.2007.02.010
[12] Foster, D. R. (1988). Species and stand response to catastrophic wind in central New England, USA. Journal of Ecology, 76, 135-151 doi:10.2307/2260458.
[13] Fukui, D., Hirao, T., Murakami, M., & Hirakawa, H. (2011). Effects of treefall gaps created by windthrow on bat assemblages in a temperate forest. Forest Ecology and Management, 261, 1546-1552. doi:10.1016/j.foreco.2011.02.001
[14] Hanson, J. J., & Lorimer, C. G. (2007). Forest structure and light regimes following moderate wind storms: implications for multi-cohort management. Ecological Applications, 17, 1325-1340. doi:10.1890/06-1067.1
[15] Huggard, D. J., Klenner, W., & Vyse, A. (1999). Windthrow following four harvest treatments in an Engelmann spruce—Subalpine fir forest in southern interior British Columbia, Canada. Canadian Journal of Forest Research, 29, 1547-1556. doi:10.1139/x99-135
[16] Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101-108.
[17] Kneeshaw, D. D., Harvey, B. D., Reyes, G. P., Caron, M. N., & Barlow, S. (2011). Spruce budworm, windthrow and partial cutting: Do different partial disturbances produce different forest structures? Forest Ecology and Management, 262, 482-490. doi:10.1016/j.foreco.2011.04.014
[18] GPPC. Le groupe de travail sur les Pédo-paysages du Canada (2010). Pédo-paysage du Canada version 3.2. Agriculture et Agroalimentaire Canada (carte numérique et base de données à l'échelle de 1/1 million).
[19] Ni Dhubhain, A., Walshe, J., Bulfin, M., Keane, M., & Mills, P. (2001). The initial development of a windthrow risk model for Sitka spruce in Ireland. Forestry, 74, 161-170. doi:10.1093/forestry/74.2.161
[20] Nolet, P., Delagrange, S., Bouffard, D., Doyon, F., & Forget, E. (2008). The successional status of sugar maple (Acer saccharum), revisited. Annals of Forest Science, 65, 208. doi:10.1051/forest:2007091
[21] Nolet, P., Hartmann, H., Bouffard, D., & Doyon, F. (2007). Predicted and observed sugar maple mortality in relation to site quality indicators. Northern Journal of Applied Forestry, 24, 258-264.
[22] Papaik, M. J., & Canham, C. D., (2006). Species resistance and community response to wind disturbance regimes in northern temperate forests. Journal of Ecology, 94, 1011-1026. doi:10.1111/j.1365-2745.2006.01153.x
[23] Papaik, M. J., Canham, C. D., Latty, E. F., & Woods, K. D. (2005). Effects of an introduced pathogen on resistance to natural disturbance: Beech bark disease and windthrow. Canadian Journal of Forest Research, 35, 1832-1843. doi:10.1139/x05-116
[24] Peltola, H., ki, S., Nen, H., & Ikonen, V. P. (1999). A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Canadian Journal of Forest Research, 29, 647-661. doi:10.1139/x99-029
[25] Peterson, C. J. (2007). Consistent influence of tree diameter and species on damage in nine eastern North America tornado blowdowns. Forest Ecology and Management, 250, 96-108. doi:10.1016/j.foreco.2007.03.013
[26] Putz, F. E., Coley, P. D., Lu, K., Montalvo, A., & Aiello, A., (1983). Uprooting and snapping of trees: structural determinants and ecological consequences. Canadian Journal of Forest Research, 13, 1011-1020. doi:10.1139/x83-133
[27] R Development Core Team (2004). R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
[28] Rich, R. L., Frelich, L. E., & Reich, P. B. (2007). Wind-throw mortality in the southern boreal forest: Effects of species, diameter and stand age. Journal of Ecology, 95, 1261-1273. doi:10.1111/j.1365-2745.2007.01301.x
[29] Robitaille, A., & Saucier, J.-P. (1998). Paysages régionaux du Québec méridional. Les Publications du Québec, Québec.
[30] Ruel, J. C. (1995). Understanding windthrow: Silvicultural implications. The Forestry Chronicle, 71, 435-445.
[31] Ruel, J. C. (2000). Factors influencing windthrow in balsam fir forests: From landscape studies to individual tree studies. Forest Ecology and Management, 135, 169-178. doi:10.1016/S0378-1127(00)00308-X
[32] Saucier, J.-P., Grondin, P., Robitaille, A., & Bergeron, J. F. (2011). Carte des zones de végétation et des domaines bioclimatiques du Québec. Ministère des Ressources naturelles, de la Faune et des Parcs, Direction des inventaires forestiers.
[33] Savill, P. S. (1983). Silviculture in windy climates. Forestry Abstracts, 44, 473-488.
[34] Scott, R. E., & Mitchell, S. J. (2005). Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. Forest Ecology and Management, 218, 193-209. doi:10.1016/j.foreco.2005.07.012
[35] Seymour, R. S., White, A. S., & DeMaynadier, P. G. (2002). Natural disturbance regimes in northeastern North America—Evaluating silvicultural systems using natural scales and frequencies. Forest Ecology and Management, 155, 357-367. doi:10.1016/S0378-1127(01)00572-2
[36] Simon, A., Gratzer, G., & Sieghardt, M., (2011). The influence of windthrow microsites on tree regeneration and establishment in an old growth mountain forest. Forest Ecology and Management, 262, 1289-1297. doi:10.1016/j.foreco.2011.06.028
[37] Stedinger, J. R. (1984). A Spruce budworm-forest model and its implications for suppression programs. Forest Science, 30, 597-615.
[38] Stephens, S. L., & Ruth, L. W. (2005). Federal forest-fire policy in the United States. Ecological Applications, 15, 532-542. doi:10.1890/04-0545
[39] Valinger, E., & Fridman, J. (2011). Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. Forest Ecology and Management, 262, 398-403. doi:10.1016/j.foreco.2011.04.004
[40] Wood, C. J. (1995). Understanding wind forces on trees. In M. P. Coutts, & J. Grace (Eds.), Wind and trees (pp. 133-164). Cambridge: Cambridge University Press.
[41] Woods, K. D. (2004). Intermediate disturbance in a late-successional hemlock-northern hardwood forest. Journal of Ecology, 92, 464-476. doi:10.1111/j.0022-0477.2004.00881.x.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.