Share This Article:

Transient GUS and GFP Expression in Spanish Red Cedar (Cedrela odorata L.) Somatic Embryos. Optimization of Bombardment Conditions and Evaluation of Selective Agent Lethal Dose

Abstract Full-Text HTML Download Download as PDF (Size:369KB) PP. 54-58
DOI: 10.4236/ojf.2012.22007    4,370 Downloads   7,324 Views  

ABSTRACT

Cedrela odorata is a tropical tree widely appreciated for its wood. Commercial plantations are frequently hampered by the attack of the meliacea borer, Hypsipyla grandella, and the lack of resistant varieties. C. odorata traditional breeding would consume very long periods of time, thus direct transfer of entomotoxic coding genes to generate resistant varieties is a promising alternative. There are two prerequisites for gene manipulation of this species: 1) to set the conditions for transgene delivery and 2) to have a way to select regenerating transformed plants. In this paper, we report the optimal biolistics conditions for transient expression of uidA and gfp reporter genes in C. odorata somatic embryos and the selective doses for kanamycin, spectinomycin, phosphinotrycin and hygromycin to screen transformed cells.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Peña-Ramírez, Y. , Apolinar-Hernández, M. , Gómez-y-Gómez, O. , López-Ochoa, L. & O’Connor-Sánchez, A. (2012). Transient GUS and GFP Expression in Spanish Red Cedar (Cedrela odorata L.) Somatic Embryos. Optimization of Bombardment Conditions and Evaluation of Selective Agent Lethal Dose. Open Journal of Forestry, 2, 54-58. doi: 10.4236/ojf.2012.22007.

References

[1] Abdollahi, M. R., Moieni, A., Salmanian, A. H., & Mousavi, A. (2009). Secondary embryogenesis and transient expression of the β-glucuronidase gene in hypocotyls of rapeseed microspore-derived embryos. Biologia Plantarum, 53, 573-577. doi:10.1007/s10535-009-0104-1
[2] Able, J. A., Rathus, C., & Godwin, I. D. (2001). The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum. In Vitro Cellular & Developmental Biology—Plant, 37, 341-348. doi:10.1007/s11627-001-0061-7
[3] Campbell, M. M., Brunner, A. M., Jones, H. M. & Strauss, S. H. (2003). Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnology Journal, 1, 141-154. doi:10.1046/j.1467-7652.2003.00020.x
[4] Casas, A. M., Kononowicz, A. K., Zher, U. B., Tomes, D. T., Axtell, J. D., Butler, L. G., Bressan, R. A., & Hasegawa, P. M. (1993). Transgenic sorghum plants via microprojectile bombardment. Proceedings of the National Academy of Sciences USA, 90, 11212-11216. doi:10.1073/pnas.90.23.11212
[5] Catlin, D. W. (1990). The effect of antibiotics on the inhibition of callus induction and plant regeneration from cotyledons of sugarbeet (Beta vulgaris L.). Plant Cell Reports, 9, 285-288. doi:10.1007/BF00232303
[6] Drewinko, B., Freireich, E. J., & Gottlieb, J. A. (1974). Lethal activity of camptothecin sodium on human lymphoma cells. Cancer Research, 34, 747-750.
[7] Duke, S. O. (1996). Herbicide-resistant crops: Agricultural, environmental, economic, regulatory, and technical aspects. Boca Raton, FL: CRC Press.
[8] Elliott, A. R., Campbell, J. A., Dugdale, B., Brettel, R. I. S., & Grof, C. P. L. (1999). Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Reports, 18, 707-714. doi:10.1007/s002990050647
[9] Geier, T., Eimert, K., Scherer, R., & Nickel, C. (2008). Production and rooting behaviour of rol B-transgenic plants of grape rootstock ‘richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell, Tissue and Organ Culture, 94, 269-280. doi:10.1007/s11240-008-9352-6
[10] Giri, C. C., Shyamkumar, B., & Anjaneyulu, C. (2004). Progress in tissue culture, genetic transformation and applications of biotechnology to trees: An overview. Trees, 18, 115-135. doi:10.1007/s00468-003-0287-6
[11] Heim, R., & Tsien, R. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Current Biology, 6, 178-182. doi:10.1016/S0960-9822(02)00450-5
[12] Hunold, R., Bronner, R., & Hahne, G. (1994). Early events in microprojectile bombardment: Cell viability and particle location. The Plant Journal, 5, 593-604. doi:10.1046/j.1365-313X.1994.5040593.x
[13] Ikea, J., Ingelbrecht, I., Uwaifo, A., & Thottappilly, G. (2003). Stable gene transformation in cowpea (Vigna unguiculata L. walp.) using particle gun method. African Journal of Biotechnology, 2, 211-218.
[14] Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901-3907.
[15] Jeoung, J. M., Krishnaveni, S., Muthukrishnan, S., Trick, H. N., & Liang, G. H. (2003). Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas, 137, 120-128.
[16] Klein, T. M., & Jones, T. J. (1999). Methods of genetic transformation: The gene gun. In: I. K. Vasil (Ed.), Molecular improvement of cereal crops (pp. 21-42). The Netherlands: Kluwer Academic Publishers. doi:10.1007/978-94-011-4802-3_3
[17] Merkle, S. A., & Nairn, C. J. (2005). Hardwood tree biotechnology. In Vitro Cellular & Developmental Biology—Plant, 41, 602-619. doi:10.1079/IVP2005687
[18] Morimoto, M., Nakamura, K., & Sano, H. (2006). Regeneration and genetic engineering of a tropical tree Azadirachta excelsa. Plant Biotechnology, 23, 123-127. doi:10.5511/plantbiotechnology.23.123
[19] Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
[20] Okumura, S., Sawada, M., Park, Y. W., Hayashi, T., Shimamura, M., Takase, H., & Tomizawa, K. I. (2006). Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Research, 15, 637-646. doi:10.1007/s11248-006-9009-3
[21] Parveez, G. K. A., Chowdhury, M. K. U., & Saleh, N. M. (1997). Physical parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) using the biolistic device. Industrial Crops and Products, 6, 41-50. doi:10.1016/S0926-6690(96)00204-X
[22] Pe?a-Ramírez, Y. J., García-Shese?a, I., Hernández-Espinoza, A., Domínguez-Hernández, A., Barredo-Pool, F. A., GonzálezRodríguez, J. A., & Robert, M. L. (2011). Induction of somatic embryogenesis and plant regeneration in the tropical timber tree Spanish red cedar [Cedrela odorata L. (Meliaceae)]. Plant Cell, Tissue and Organ Culture, 105, 203-209. doi:10.1007/s11240-010-9853-y
[23] Pérez-Barranco, G., Torreblanca, R., Padilla, I. M. G., Sánchez-Romero, C., Pliego-Alfaro, F., & Mercado, J. A. (2009). Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. transient transformation via particle bombardment. Plant Cell, Tissue and Organ Culture, 97, 243-251. doi:10.1007/s11240-009-9520-3
[24] Pérez-Salicrup, D. R., & Esquivel, R. (2008). Tree infection by Hypsipyla grandella in Swietenia macrophylla and Cedrela odorata (Meliaceae) in Mexico’s southern Yucatan Peninsula. Forest Ecology and Management, 255, 324-327.
[25] Rasco-Gaunt, S., Riley, A., Barcelo, P., & Lazzeri, P. A. (1999). Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Reports, 19, 118-127. doi:10.1007/s002990050721
[26] Rothrock, R. E., Polin-McGuigan, L. D., Newhouse, A. E., Powell, W. A., & Maynard, C. A. (2007). Plate flooding as an alternative Agrobacterium-mediated transformation method for American chestnut somatic embryos. Plant Cell, Tissue and Organ Culture, 88, 93-99. doi:10.1007/s11240-006-9170-7
[27] Sanford, J. C., Smith, F. D., & Russell, J. A. (1993). Optimizing the biolistic process for different biological applications. Methods in Enzymology, 217, 483-509. doi:10.1016/0076-6879(93)17086-K
[28] Sartoretto, L. M., Cid, L. P. B., Brasileiro, A. C. M. (2002). Biolistic transformation of Eucalyptus grandis × E. urophylla callus. Functional Plant Biology, 29, 917-924. doi:10.1071/PP01153
[29] Sch?pke, C., Taylor, N. J., Cárcamo, R., Beachy, R. N., & Fauquet, C. (1997). Optimization of parameters for particle bombardment of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) using computer image analysis. Plant Cell Reports, 16, 526-530.
[30] Tadesse, Y., Sági, L., Swennen, R., & Jacobs, M. (2003). Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell, Tissue and Organ Culture, 75, 1-18. doi:10.1023/A:1024664817800
[31] Tee, C. S., & Maziah, M. (2005). Optimization of biolistic bombardment parameters for Dendrobium Sonia 17 calluses using GFP and GUS as the reporter system. Plant Cell, Tissue and Organ Culture, 80, 77-89. doi:10.1007/s11240-004-9144-6
[32] Zuker, A., Chang, P. F. L., Ahroni, A., Cheah, K., Woodson, W. R., Bressan, R. A., Watad, A. A., Hasegawa, P. M., & Vainstein, A. (1995). Transformation of carnation by microprojectile bombardment. Scientia Horticulturae, 64, 177-185. doi:10.1016/0304-4238(95)00817-9

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.