Asymptotic Behaviour to a Von Kármán System with Internal Damping

Abstract

In this work we consider the Von Kármán system with internal damping acting on the displacement of the plate and using the Theorem due to Nakao [1] we prove the exponential decay of the solution.

Share and Cite:

D. Pereira, C. Raposo and C. Maranhão, "Asymptotic Behaviour to a Von Kármán System with Internal Damping," Applied Mathematics, Vol. 3 No. 3, 2012, pp. 210-212. doi: 10.4236/am.2012.33033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Nakao, “A Difference Inequalit and Its Application to Nonolinear Evolution Equation,” Journal of the Mathematical Society of Japan, Vol. 30, No. 4, 1978, pp. 747-762. doi:10.2969/jmsj/03040747
[2] T. V. Kármán, “Festigkeitsprobleme im Maschinenbaum. Encyklopadie der Math,” Wiss. V/4C, Leipzig, 1910, pp. 311-385.
[3] M. Horn and I. Lasiecka, “Uniform Decay of Weak Solutions to a Von Kármán Plate with Nonlinear Boundary Dissipation,” Differential and Integral Equations, Vol. 7, No. 4, 1994, pp. 885-908.
[4] M. Horn and I. Lasiecka, “Global Stabilization of a Dynamical Von Kármán Plate with Nonlinear Boundary Feedback,” Applied Mathematics & Optimization, Vol. 31, No. 1, 1995, pp. 57-84. doi:10.1007/BF01182557
[5] M. Horn, A. Favini, I. Lasiecka and D. Tataru, “Global Existence, Uniqueness and Regularity to a Von Kármán System with Nonlinear Boundary Dissipation,” Differential and Integral Equations, Vol. 9, No. 2, 1996, pp. 267-294.
[6] G. P. Menzala and E. Zuazua, “Energy Decay Rates for the Von Kármán System of Thermoelastic Plates,” Differential and Integral Equations, Vol. 11, No. 5, 1998, pp. 755-770.
[7] J. E. M. Rivera and G. P. Menzala, “Decay Rates of Solutions of a Von Kármán System for Viscoelastic Plates with Memory,” Quarterly of Applied Mathematics, Estados Unidos, Vol. 82, No. 1, 1999, pp.181-200.
[8] J. E. M. Rivera, H. P. Oquendo and M. L. Santos, “Asymptotic Behavior to a Von Kármán Plate with Boundary Memory Conditions,” Nonlinear Analysis, Vol. 62, No. 7, 2005, pp. 1183-1205. doi:10.1016/j.na.2005.04.025
[9] C. A. Raposo and M. L. Santos, “General Decay to a Von Kármán System with Memory,” Nonlinear Analysis, Vol. 74, No. 3, 2011, pp. 937 945. doi:10.1016/j.na.2010.09.047
[10] G. Avalos and I. Lasiecka, “Uniform Decays in Nonlinear Thermoelastic System,” In: W. Hager and P. Pardalos, Eds., Optimal Control, Theory Algorithms and Application, Kluwer, 1998, pp. 1-23.
[11] G. Avalos, I. Lasiecka and R. Triggiani, “Uniform Stability of Nonlinear Thermoelastic Plates with Free Boundary Conditions,” International Series of Numerical Mathematics, Vol. 133, 1999, pp. 13-32.
[12] H. Koch and A. Stahel, “Global Existence of Classical Solutions to the Dynamical Von Kármán Equations,” Mathematical Methods in the Applied Sciences, Vol. 161, 1993, pp. 581-586. doi:10.1002/mma.1670160806
[13] J. Puel and M. Tucsnak, “Boundary Stabilization for the Von Kármán Equations,” SIAM Journal on Control and Optimization, Vol. 33, No. 1, 1996, pp. 255-273. doi:10.1137/S0363012992228350
[14] A. Adams, “Sobolev Spaces,” Academic Press, New York, 1975.
[15] G. P. Menzala, V. Bisognin, E. Bisognin and E. Zuazua, “On Exponential Stability for Von Kármán Equations in the Presence of Thermal Effects,” Mathematical Methods in the Applied Sciences, Vol. 21, No. 5, 1988, pp. 393-416.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.