Share This Article:

Subclinical Hypothyroidism in Children Can Normalize after Changes in Dietary Intake

Abstract Full-Text HTML Download Download as PDF (Size:144KB) PP. 411-416
DOI: 10.4236/fns.2012.33059    7,606 Downloads   13,149 Views   Citations

ABSTRACT

Background: There is no effective treatment for children with subclinical hypothyroidism. The natural course of subclinical hypothyroidism shows a normalization rate of 41% for Thyroid Stimulating Hormone (TSH). Objective; The thyroid needs (among others) iron, iodine, and vitamin A for a proper thyroid hormone synthesis. We hypothesize that with a dietary change, more children can normalize their TSH. Design: In this case-control study, 54 children aged 1 - 14 years with subclinical hypothyroidism were divided into a diet group and a control group. The diet consisted of green vegetables, beef, full fat milk, and butter. The diet was followed for at least 3 months. A total of 27 patients comprised the diet group and 27 the control group. TSH, Free T4 (FT4), and Body Mass Index (BMI) were evaluated during the follow up. Results: By following this diet, TSH levels decreased significantly compared to when following the natural course. FT4 levels did not change during the follow up. The diet group realized a change of normalizing their TSH with a RR 2.8 (95% CI 1.45 - 5.61). There were no changes in BMI after following the diet. Conclusions: Even though our study population was small, we observed the association of a dietary change and normalization of TSH in children with subclinical hypothyroidism, without adverse effects.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Kuiper and E. Gaag, "Subclinical Hypothyroidism in Children Can Normalize after Changes in Dietary Intake," Food and Nutrition Sciences, Vol. 3 No. 3, 2012, pp. 411-416. doi: 10.4236/fns.2012.33059.

References

[1] N. Rodondi, W. P. den Elzen, D. C. Bauer, A. R. Cappola, S. Razvi, J. P. Walsh, B. O. Asvold, G. Iervasi, M. Imaizumi, T. H. Collet, A. Bremner, P. Maisonneuve, J. A. Sgarbi, K. T. Khaw, M. P. Vanderpump, A. B. Newman, J. Cornuz, J. A. Franklyn, R. G. Westendorp, E. Vittinghoff and J. Gussekloo, “Subclinical Hypothyroidism and the Risk of Coronary Heart Disease and Mortality,” Journal of the American Medical Association (JAMA), Vol. 304, No. 12, 2010, pp. 1365-1374. doi:10.1001/jama.2010.1361
[2] N. Rodondi, D. Aujesky, E. Vittinghoff, J. Cornuz and D. C. Bauer, “Subclinical Hypothyroidism and the Risk of Coronary Heart Disease: A Meta-Analysis,” American Journal of Medicine, Vol. 119, No. 7, 2006, pp. 541-551. doi:10.1016/j.amjmed.2005.09.028
[3] D. C. Moore, “Natural Course of ‘Subclinical’ Hypothyroidism in Childhood and Adolescence,” Archives of Pediatrics & Adolescent Medicine, Vol. 150, No. 3, 1996, pp. 293-297. doi:10.1001/archpedi.1996.02170280063012
[4] M. Wasniewska, M. Salerno, A. Cassio, A. Corrias, T. Aversa, G. Zirilli, D. Capalbo, M. Bal, A. Mussa and L. F. De, “Prospective Evaluation of the Natural Course of Idiopathic Subclinical Hypothyroidism in Childhood and Adolescence,” European Journal of Endocrinology, Vol. 160, No. 3, 2009, pp. 417-421. doi:10.1530/EJE-08-0625
[5] F. De Luca M. Wasniewska, G. Zirilli, T. Aversaand Arrigo, “At the End of a Two-Year Follow-Up Elevated TSH Levels Normalize or Remain Unchanged in Most the Children with Subclinical Hypothyroidism,” Italian Journal of Pediatrics, Vol. 36, No. 1, 2010, pp. 11. doi:10.1186/1824-7288-36-11
[6] L. H. Fish, H. L. Schwartz, J. Cavanaugh, M. W. Steffes, J. P. Bantle and J. H. Oppenheimer, “Replacement Dose, Metabolism, and Bioavailability of Levothyroxine in the Treatment of Hypothyroidism. Role of Triiodothyronine in Pituitary Feedback in Humans,” New England Journal of Medicine, Vol. 316, No. 13, 1987, pp. 764-770. doi:10.1056/NEJM198703263161302
[7] A. P. Weetman and A. M. McGregor, “Autoimmune Thyroid Disease: Developments in Our Understanding,” Endocrine Reviews, Vol. 5, No. 2, 1984, pp. 309-355.
[8] S. Mariotti, P. Caturegli, P. Piccolo, G. Barbesino and A. Pinchera, “Antithyroid Peroxidase Autoantibodies in Thyroid Diseases,” The Journal of Clinical Endocrinology & Metabolism, Vol. 71, No. 3, 1990, pp. 661-669. doi:10.1210/jcem-71-3-661
[9] R. A. Nordyke, F. I. Gilbert Jr., L. A. Miyamoto and K. A. Fleury, “The Superiority of Antimicrosomal over Antithyroglobulin Antibodies for Detecting Hashimoto’s Thyroiditis,” Archives of Internal Medicine, Vol. 153, No. 7, 1993, pp. 862-865. doi:10.1001/archinte.153.7.862
[10] W. M. Tunbridge, D. C. Evered, R. Hall, D. Appleton, M. Brewis, F. Clark, J. G. Evans, E. Young, T. Bird and P. A. Smith, “The Spectrum of Thyroid Disease in a Community: The Whickham Survey,” Clinical Endocrinology, Vol. 7, No. 6, 1977, pp. 481-493. doi:10.1111/j.1365-2265.1977.tb01340.x
[11] G. J. Canaris, N. R. Manowitz, G. Mayor and E. C. Ridgway, “The Colorado Thyroid Disease Prevalence Study,” Archives of Internal Medicine, Vol. 160, No. 4, 2000, pp. 526-534. doi:10.1001/archinte.160.4.526
[12] T. P. Foley Jr., V. Abbassi, K. C. Copeland and M. B. Draznin, “Brief Report: Hypothyroidism Caused by Chronic Autoimmune Thyroiditis in Very Young Infants,” New England Journal of Medicine, Vol. 330, No. 7, 1994, pp. 466-468. doi:10.1056/NEJM199402173300704
[13] M. B. Zimmermann, “Interactions of Vitamin A and Iodine Deficiencies: Effects on the Pituitary-Thyroid Axis,” International Journal for Vitamin and Nutrition Research, Vol. 77, No. 3, 2007, pp. 236-240. doi:10.1024/0300-9831.77.3.236
[14] M. B. Zimmermann, R. Wegmuller, C. Zeder, N. Chaouki and T. Torresani, “The Effects of Vitamin A Deficiency and Vitamin A Supplementation on Thyroid Function in Goitrous Children,” The Journal of Clinical Endocrinology & Metabolism, Vol. 89, No. 11, 2004, pp. 5441-5447. doi:10.1210/jc.2004-0862
[15] G. A. Kandhro, T. G. Kazi, H. I. Afridi, N. Kazi, M. B. Arain, R. A. Sarfraz Sirajuddin, N. Syed, J. A. Baig and A. Q. Shah, “Evaluation of Iron in Serum and Urine and Their Relation with Thyroid Function in Female Goitrous Patients,” Biological Trace Element Research, Vol. 125, No. 3, 2008, pp. 203-212. doi:10.1007/s12011-008-8174-z
[16] M. B. Zimmermann, “The Influence of Iron Status on Iodine Utilization and Thyroid Function,” Annual Review of Nutrition, Vol. 26, 2006, pp. 367-389. doi:10.1146/annurev.nutr.26.061505.111236
[17] S. Y. Hess, M. B. Zimmermann, M. Arnold, W. Langhans and R. F. Hurrell, “Iron Deficiency Anemia Reduces Thyroid Peroxidase Activity in Rats,” Journal of Nutrition, Vol. 132, No. 7, 2002, pp. 1951-1955.
[18] K. Oba and S. Kimura, “Effects of Vitamin A Deficiency on Thyroid Function and serum Thyroxine Levels in the Rat,” Journal of Nutritional Science and Vitaminology (Tokyo), Vol. 26, No. 4, 1980, pp. 327-334. doi:10.3177/jnsv.26.327
[19] N. S. Brown, A. Smart, V. Sharma, M. L. Brinkmeier, L. Greenlee, S. A. Camper, D. R. Jensen, R. H. Eckel, W. Krezel, P. Chambon and B. R. Haugen, “Thyroid Hormone Resistance and Increased Metabolic Rate in the RXR-Gamma-Deficient Mouse,” Journal of Clinical Investigation, Vol. 106, No. 1, 2000, pp. 73-79. doi:10.1172/JCI9422
[20] J. J. Breen, T. Matsuura, A. C. Ross and J. A. Gurr, “Regulation of Thyroid-Stimulating Hormone BetaSubunit and Growth Hormone Messenger Ribonucleic Acid Levels in the Rat: Effect of Vitamin A Status,” Endocrinology, Vol. 136, No. 2, 1995, pp. 543-549. doi:10.1210/en.136.2.543
[21] M. B. Zimmermann, “Iodine Deficiency,” Endocrine Reviews, Vol. 30, No. 4, 2009, pp. 376-408. doi:10.1210/er.2009-0011
[22] M. B. Zimmermann, P. L. Jooste, N. S. Mabapa, S. Schoeman, R. Biebinger, L. F. Mushaphi and X. Mbhenyane, “Vitamin A Supplementation in Iodine-Deficient African Children Decreases Thyrotropin Stimulation of the Thyroid and Reduces the Goiter Rate,” American Journal of Clinical Nutrition, Vol. 86, No. 4, 2007, pp. 1040-1044.
[23] T. E. Hamilton, S. Davis, L. Onstad and K. J. Kopecky, “Thyrotropin Levels in a Population with no Clinical, Autoantibody, or Ultrasonographic Evidence of Thyroid Disease: Implications for the Diagnosis of Subclinical Hypothyroidism,” The Journal of Clinical Endocrinology & Metabolism, Vol. 93, No. 4, 2008, pp. 1224-1230. doi:10.1210/jc.2006-2300
[24] The Hague: Dutch Food Center, “NEVO-tabel 2006: Nederlands Voedingsstoffenbestand 2006,” 2006.
[25] The Dutch Health Council, “Healthy Nutrition,” 2010. www.gezondheidsraad.nl
[26] World Health Organization and International Council for the Control of Iodine Deficiency Disorders, “Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination, a Guide for Programme Managers,” 2007.
[27] M. Haldimann, A. Alt and A. Blanc, “Iodine Content of Food Groups,” Journal of Food Composition and Analysis, Vol. 18, 2005, pp. 461-471. doi:10.1016/j.jfca.2004.06.003
[28] E. N. Pearce, S. Pino, X. He, H. R. Bazrafshan, S. L. Lee and L. E. Braverman, “Sources of Dietary Iodine: Bread, Cows’ Milk, and Infant Formula in the Boston Area,” The Journal of Clinical Endocrinology & Metabolism, Vol. 89, No. 7, 2004, pp. 3421-3424. doi:10.1210/jc.2003-032002
[29] C. J. Field, I. R. Johnson and P. D. Schley, “Nutrients and Their Role in Host Resistance to Infection,” Journal of Leukocyte Biology, Vol. 71, No. 1, 2002, pp. 16-32.
[30] M. T. Cantorna, F. E. Nashold and C. E. Hayes, “Vitamin A Deficiency Results in a Priming Environment Conducive for Th1 Cell Development,” European Journal of Immunology, Vol. 25, No. 6, 1995, pp. 1673-1679. doi:10.1002/eji.1830250629
[31] S. S. Twining, D. P. Schulte, P. M. Wilson, B. L. Fish and J. E. Moulder, “Vitamin A Deficiency Alters Rat Neutrophil Function,” Journal of Nutrition, Vol. 127, No. 4, 1997, pp. 558-565.
[32] J. D. Kemp, “The Role of Iron and Iron Binding Proteins in Lymphocyte Physiology and Pathology,” Journal of Clinical Immunology, Vol. 13, No. 2, 1993, pp. 81-92. doi:10.1007/BF00919264
[33] F. B. Hu, J. E. Manson and W. C. Willett, “Types of Dietary Fat and Risk of Coronary Heart Disease: A Critical Review,” Journal of the American College of Nutrition, Vol. 20, No. 1, 2001, pp. 5-19.
[34] K. Oh, F. B. Hu, J. E. Manson, M. J. Stampfer and W. C. Willett, “Dietary Fat Intake and Risk of Coronary Heart Disease in Women: 20 Years of Follow-Up of the Nurses’ Health Study,” American Journal of Epidemiology, Vol. 161, No. 7, 2005, pp. 672-679. doi:10.1093/aje/kwi085
[35] B. Lands, “A Critique of Paradoxes in Current Advice on Dietary Lipids,” Progress in Lipid Research, Vol. 47, No. 2, 2008, pp. 77-106. doi:10.1016/j.plipres.2007.12.001
[36] A. Haug, A. T. Hostmark and O. M. Harstad, “Bovine Milk in Human Nutrition—A Review,” Lipids Health Disease, Vol. 6, 2007, p. 25. doi:10.1186/1476-511X-6-25
[37] M. B. Snijder, A. A. van der Heijden, R. M. van Dam, C. D. Stehouwer, G. J. Hiddink, G. Nijpels, R. J. Heine, L. M. Bouter and J. M. Dekker, “Is Higher Dairy Consumption Associated with Lower Body Weight and Fewer Metabolic Disturbances? The Hoorn Study,” American Journal of Clinical Nutrition, Vol. 85, No. 4, 2007, pp. 989-995.
[38] C. S. Berkey, H. R. Rockett, W. C. Willett and G. A. Colditz, “Milk, Dairy Fat, Dietary Calcium, and Weight Gain: A Longitudinal Study of Adolescents,” Archives of Pediatrics & Adolescent Medicine, Vol. 159, No. 6, 2005, pp. 543-550. doi:10.1001/archpedi.159.6.543
[39] L. M. Steffen, C. H. Kroenke, X. Yu, M. A. Pereira, M. L. Slattery, H. L. Van, M. D. Gross and D. R. Jacobs Jr., “Associations of Plant Food, Dairy Product, and Meat Intakes with 15-y Incidence of Elevated Blood Pressure in Young Black and White Adults: The Coronary Artery Risk Development in Young Adults (CARDIA) Study,” American Journal of Clinical Nutrition, Vol. 82, No. 6, 2005, pp. 1169-1177.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.