Free Radical-Scavenging Properties and Antioxidant Activity of Fractions from Cranberry Products

Abstract

Lipid peroxidation inhibition capacity and antiradical activity were evaluated in HPLC fractions of different polarity obtained from two cranberry juices and three extracts isolated from frozen cranberries and pomace containing antho-cyanins, water-soluble and apolar phenolic compounds, respectively. Compounds with close polarities were collected to obtain between three and four fractions from each juice or extract. The cranberry phenols are good free radi-cal-scavengers, but they were less efficient at inhibiting the lipid peroxidation. Of all the samples tested, the intermediate polarity fraction of extract rich in apolar phenolic compounds of fruit presented the highest antiradical activity while the most hydrophobic fractions of the anthocyanin-rich extract from fruit and pomace appeared to be the most efficient at inhibiting the lipid peroxidation. The antioxidant or pro-oxidant activity of fractions increased with the con-centration. The phenol polarity and the technological process to manufacture cranberry juice can influence the antioxidant and antiradical activities of fractions.

Share and Cite:

S. Caillet, G. Lorenzo, J. Côté, J. Sylvain and M. Lacroix, "Free Radical-Scavenging Properties and Antioxidant Activity of Fractions from Cranberry Products," Food and Nutrition Sciences, Vol. 3 No. 3, 2012, pp. 337-347. doi: 10.4236/fns.2012.33049.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] O. I. Aruoma, “Free Radicals, Oxidative Stress, and Antioxidants in Human Health and Disease,” Journal of the American Oil Chemists Society, Vol. 75, No. 2, 1998, pp. 199-212. doi:10.1007/s11746-998-0032-9
[2] K. E. Heim, A. R. Tagliaferro and D. J. Bobilya, “Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships,” The Journal of Nutritional Biochemistry, Vol. 13, No. 10, 2002, pp. 572-584. doi:10.1016/S0955-2863(02)00208-5
[3] J. J. Macheix, A. Fleuriet and J. Billot, “Fruit Phenolics,” CRC Press, Boca Raton, 1990.
[4] J. A. Mantley and B. S. Buslig, “Flavonoids in the Living System,” In: J. A. Mantley and B. S. Buslig, Eds., Advances in Experimental Medicine and Biology, Plenum Press, New York, 1998, p. 278.
[5] I. M. Heinonen, A. S. Meyer and E. N. Frankel, “Antioxidant Activity of Berry Phenolics on Human LowDensity Lipoprotein and Liposome Oxidation,” Journal of Agricultural and Food Chemistry, Vol. 46, No. 10, 1998, pp. 4107-4112. doi:10.1021/jf980181c
[6] S. Y. Wang, and H. Jiao, “Scavenging Capacity of Berry Crops on Superoxide Radicals, Hydrogen Peroxide, Hydroxyl Radicals, and Singlet Oxygen,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 11, 2000, pp. 5677-5684. doi:10.1021/jf000766i
[7] F. Shahidi and P. K. J. Wanasundara, “Phenolic Antioxidants,” Critical Reviews in Food Science and Nutrition, Vol. 32, No. 1, 1992, pp. 67-103. doi:10.1080/10408399209527581
[8] M. Heinonen, “Antioxidant Activity and Antimicrobial Effect of Berry Phenolics—A Finnish Perspective,” Molecular Nutrition and Food Research, Vol. 51, No. 6, 2007, pp. 684-691. doi:10.1002/mnfr.200700006
[9] G. Ruel and C. Couillard, “Evidences of the Cardioprotective Potential of Fruits: The Case of Cranberries,” Molecular Nutrition and Food Research, Vol. 51, No. 6, 2007, pp. 692-701. doi:10.1002/mnfr.200600286
[10] M. L. Porter, C. G. Krueger, D. A. Wiebe, D. G. Cunningham and J. D. Reed, “Cranberry Proanthocyanidins Associate with Low-Density Lipoprotein and Inhibit in Vitro Cu2+-Induced Oxidation,” Journal of the Science of Food and Agriculture, Vol. 81, No. 14, 2001, pp. 13061313. doi:10.1002/jsfa.940
[11] C. H. Lee, J. D. Reed and M. P. Richards, “Ability of Various Polyphenolic Classes from Cranberry to Inhibit Lipid Oxidation in Mechanically Separated Turkey and Cooked Ground Pork,” Journal of Muscle Foods, Vol. 17, No. 3, 2006, pp. 248-266. doi:10.1111/j.1745-4573.2006.00048.x
[12] V. D. La, J. Labrecque and D. Grenier, “Cytoprotective Effect of Proanthocyanidin-Rich Cranberry Fraction against Bacterial Cell Wall-Mediated Toxicity in Macrophages and Epithelial Cells,” Phytotherapy Research, Vol. 23, No. 10, 2009, pp. 1449-1452. doi:10.1002/ptr.2799
[13] S. Huttunen, M. Toivanen, S. Arkko, M. Ruponen and C. Tikkanen-Kaukanen, “Inhibition Activity of Wild Berry Juice Fractions against Streptococcus pneumoniae Binding to Human Bronchial Cells,” Phytotherapy Research, Vol. 25, No. 1, 2011, pp. 122-127. doi:10.1002/ptr.3240
[14] N. P. Seeram, L. S. Adams, M. L. Hardy and D. Heber, “Total Cranberry Extract Versus Its Phytochemical Constituents: Antiproliferative and Synergistic Effects against Human Tumor Cell Lines,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 9, 2004, pp. 2512-2517. doi:10.1021/jf0352778
[15] C. C. Neto, C. G. Krueger, T. L. Lamoureaux, M. Kondo, A. J. Vaisberg, R. A. R. Hurta, S. Curtis, M. D. Matchett, H. Yeung, M. I. Sweeney and J. D. Reed, “MALDI-TOF MS Characterization of Proanthocyanidins from Cranberry Fruit (Vaccinium macrocarpon) That Inhibit Tumor Cell Growth and Matrix Metalloproteinase Expression in Vitro,” Journal of the Science of Food and Agriculture, Vol. 86, No. 1, 2006, pp. 18-25. doi:10.1002/jsfa.2347
[16] X. Wu and R. L. Prior, “Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS-MS in Common Foods in the US—Fruits and Berries,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 7, 2005, pp. 2589-2599. doi:10.1021/jf048068b
[17] V. L. Singleton and A. Rossi, “Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents,” American Journal of Enology and Viticulture, Vol. 16, No. 3, 1965, pp. 144-158.
[18] S. Caillet, S., Salmiéri and M. Lacroix, “Evaluation of Free Radical Scavenging Properties of Commercial Grape Phenol Extracts by a Fast Colorimetric Method,” Food Chemistry, Vol. 95, No. 1, 2006, pp. 1-8. doi:10.1016/j.foodchem.2004.12.011
[19] S. Caillet, H. Yu, S. Lessard, G. Lamoureux, D. Ajdukovic and M. Lacroix, “Fenton Reaction Applied for Screening Natural Antioxidants,” Food Chemistry, Vol. 100, No. 2, 2007, pp. 542-552. doi:10.1016/j.foodchem.2005.10.009
[20] S. Batzri and E. D. Korn, “Single Bilayer Liposomes Prepared without Sonication,” Biochimica et Biophysica Acta, Vol. 298, No. 4, 1973, pp. 1015-1019. doi:10.1016/0005-2736(73)90408-2
[21] J. C?té, S. Caillet, G. Doyon, J. F. Sylvain and M. Lacroix, “Bioactive Compounds in Cranberries and Their Biological Properties,” Critical Reviews in Food Science and Nutrition, Vol. 50, No. 7, 2010, pp. 666-679. doi:10.1080/10408390903044107
[22] J. C?té, S. Caillet, G. Doyon, J. F. Sylvain and M. Lacroix, “Analyzing Cranberry Bioactive Compounds,” Critical Reviews in Food Science and Nutrition, Vol. 50, No. 9, 2010, pp. 872-888. doi:10.1080/10408390903042069
[23] H. Chen, Y. Zuo and Y. Deng, “Separation and Determination of Flavonoids and Other Phenolic Compounds in Cranberry Juice by High-Performance Liquid Chromatography,” Journal of Chromatography, Vol. 913, No. 1-2, 2001, pp. 387-395. doi:10.1016/S0021-9673(00)01030-X
[24] W. Zheng and S. Y. Wang, “Oxygen Radical Absorbing Capacity of Phenolics in Blueberries, Cranberries, Chokeberries, and Lingonberries,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 2, 2003, pp. 502-509. doi:10.1021/jf020728u
[25] S. Ehala, M. Vaher and M. Kaljurand, “Characterization of Phenolic Profiles of Northern European Berries by Capillary Electrophoresis and Determination of Their Antioxidant Activity,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 16, 2005, pp. 6484-6490. doi:10.1021/jf050397w
[26] A. Bilyk and G. M. Sapers, “Varietal Differences in the Quercetin, Kaempferol, and Myricetin Contents of Highbush Blueberry, Cranberry, and Thornless Blackberry Fruits,” Journal of Agricultural and Food Chemistry, Vol. 34, No. 4, 1986, pp. 585-588. doi:10.1021/jf00070a001
[27] Z. Y. Chen, P. T. Chan, K. Y. Ho, K. P. Fung and J. Wang, “Antioxidant Activity of Natural Flavonoids Is Governed by Number and Location of Their Aromatic Hydroxyl Groups,” Chemistry and Physics of Lipids, Vol. 79, No. 2, 1999, pp. 157-163. doi:10.1016/0009-3084(96)02523-6
[28] S. Burda and W. Oleszek, “Antioxidant and Antiradical activities of Flavonoids,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 6, 2001, pp. 2774-2779. doi:10.1021/jf001413m
[29] G. Cao, E. Sofic and R. L. Prior, “Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships,” Free Radical Biology and Medicine, Vol. 22, No. 5, 1997, pp. 749-760. doi:10.1016/S0891-5849(96)00351-6
[30] C. A. Rice-Evans, N. J. Miller and G. Paganga, “StructureAntioxidant Activity Relationships of Flavonoids and Phenolic Acids,” Free Radical Biology and Medicine, Vol. 20, 1 No. 7, 1996, pp. 933-956.
[31] N. Saint-Cricq de Gaulejac, C. Provost and N. Vivas, “Comparative Study of Polyphenol Scavenging Activities Assessed by Different Methods,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 2, 1999, pp. 425-431. doi:10.1021/jf980700b
[32] M. Hu, D. J. McClements and E. A. Decker, “Antioxidant Activity of a Proanthocyanidin-Rich Extract from Grape Seed in Whey Protein Isolate Stabilized Algae Oil-inWater Emulsions,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 16, 2004, pp. 5272-5276. doi:10.1021/jf049486j
[33] F. M. Steinberg, R. R. Holt, H. H. Schmitz and C. L. Keen, “Cocoa Procyanidin Chain Length Does Not Determine Ability to Protect LDL from Oxidation When Monomer Units Are Controlled,” The Journal of Nutritional Biochemistry, Vol. 13, No. 11, 2002, pp. 645-652. doi:10.1016/S0955-2863(02)00215-2
[34] A. Saija, M. Scalese, M. Lanza, D. Marzullo, F. Bonina and F. Castelli, “Flavonoids as Antioxidant Agents: Importance of Their Interaction with Biomembranes,” Free Radical Biology and Medicine, Vol. 19, No. 4, 1995, pp. 481-486. doi:10.1016/0891-5849(94)00240-K
[35] M. Guo, C. Perez, Y. Wei, E. Rapoza, G. Su, F. BouAbdallahb, and N. D. Chasteenb, “Iron-Binding properties of Plant Phenolics and Cranberry’s Bio-Effects,” Dalton Transactions, Vol. 43, 2007, pp. 4951-4961. doi:10.1039/b705136k
[36] I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard and J. Cillard, “Antioxidant and Iron-Chelating Activities of the Flavonoids Catechin, Quercetin and Diosmetin on Iron-Loaded Rat Hepatocyte Cultures,” Biochemical Pharmacology, Vol. 45, No. 1, 1993, pp. 13-19. doi:10.1016/0006-2952(93)90371-3
[37] J. Laranjinha, L. Almeida and V. Madeira, “Reduction of Ferrylmyoglobin by Dietary Phenolic Acid Derivatives of Cinnamic Acid,” Free Radical Biology and Medicine, Vol. 19, No. 3, 1995, pp. 329-337. doi:10.1016/0891-5849(95)00039-Z
[38] N. Yamanaka, O. Oda and S. Nagao, “Prooxidant Activity of Caffeic Acid, Dietary Non-Flavonoid Phenolic Acid, on Cu2+-Induced Low Density Lipoprotein Oxidation,” FEBS Letters, Vol. 405, No. 2, 1997, pp. 186-190. doi:10.1016/S0014-5793(97)00185-3
[39] E. J. Borowska, A. Szajdek and S. Czaplicki, “Effect of Heat and Enzyme Treatment on Yield, Phenolic Content and Antioxidant Capacity of Juices from Chokeberry Mash,” Italian Journal of Food Science, Vol. 21, No. 2, 2009, pp. 197-209.
[40] A. Szajdek, E. J. Borowska and S. Czaplicki, “Effect of Bilberry Mash Treatment on the Content of some Biologically Active Compounds and the Antioxidant Activity of Juices,” Acta Alimentaria, Vol. 38, No. 3, 2009, pp. 281-292. doi:10.1556/AAlim.38.2009.3.2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.