Acetylcholine participates in pain modulation by influencing endogenous opiate peptides in rat spinal cord

Abstract

The spinal cord is a necessary pathway that transfers the body nociceptive inputs to the brain, and endo-genous opiate peptides (EOP) play an important role in pain modulation. Our previous work has proven that arginine vasopressin (AVP) antinociception in the caudate nucleus (CdN) relates with the acetylcholine (Ach) system mainly. The communication was de-signed to investigate the interrelations between Ach system and EOP system at the spinal level during pain process. The results showed that: 1) pain stimulation increased L-enkephalin (L-Ek), β-endorphin (β-Ep), dynorphin A1-13(DynA1-13), Ach and choline (Ch, an Ach metabolic product) concentrations in the spinal cord; 2) Ach increased L-Ek, β-Ep and DynA1-13 concentrations in the spinal cord; and 3) Atropine (M-receptor inhibitor) or hexahydric gallamine (N-receptor inhibitor) decreased L-Ek, β-Ep and DynA1-13 concentrations in the spinal cord. The data suggested that Ach antinociception was involved in the EOP system at the spinal level.

Share and Cite:

Yang, J. , Zhao, Y. , Pan, Y. , Lu, G. , Lu, L. , Wang, D. and Wang, J. (2012) Acetylcholine participates in pain modulation by influencing endogenous opiate peptides in rat spinal cord. World Journal of Neuroscience, 2, 15-22. doi: 10.4236/wjns.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Lightman, S.L. (1988) The neuroendocrine paraventricular hypothalamus: Receptors, signal transduction. mRNA and neurosecretion. Journal of Experimental Biology, 139, 31-49.
[2] Blair, M.L., Piekut, D., Want, A. and Olschowka, J.A. (1996) Role of the hypothalamic paraventricular nucleus in cardiovascular regulation. Clinical and Experimental Pharma-cology and Physiology, 23, 161-165. doi:10.1111/j.1440-1681.1996.tb02590.x
[3] McEwen, B.B. (2004) The role of vasopressin and oxytocin in memory processing. Elsevier, Amsterdam.
[4] Taylor, T., Gesundheit, N., Gyves, P.W., Jacobowitz, D.M. and Weintraub, B.D. (1988) Hypothalamic hypothyroidism caused by lesions in rat para-ventricular nuclei alters the carbohydrate structure of secreted thyrotropin. Endocrinology, 122, 283-290. doi:10.1210/endo-122-1-283
[5] Pickard, G.F. and Turek, F.W. (1983) The hypothalamic paraventricular nucleus mediates the photoperiodic control of reproduction but not the effect of light on the circadian rhythm of activity. Neuroscience Letters, 43, 67-72. doi:10.1016/0304-3940(83)90130-1
[6] Leibowitz, S.F., Weiss, G.F. and Suh, J.S. (1990) Medial hypothalamic nuclei mediate serotonin’s inhibitory effect on feeding behavior. Pharmacology Biochemistry and Behavior, 37, 735-742.
[7] Ciriello, J., Kline, R.L., Zhang, T.X. and Ca-verson, M.M. (1984) Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Research, 310, 355-359. doi:10.1016/0006-8993(84)90159-8
[8] Kiss, J.Z. (1988) Dynamism of chemoarchitecture in the hypothalamic paraven-tricular nucleus. Brain Research Bulletin, 20, 699-708. doi:10.1016/0361-9230(88)90080-9
[9] Robinson, M.B. (2006) Acute regulation of sodium-depen- dent glutamate transporters: A focus on constitutive and regulated trafficking. Handbook of Experimental Pharmacology, 175, 251-275. doi:10.1007/3-540-29784-7_13
[10] Yang, J., Chen, J.M., Yang, Y., Liu, W.Y., Song, C.Y. and Lin, B.C. (2008) Investi-gating the role of hypothalamic paraventricular nucleus in no-ciception of the rat. International Journal of Neuroscience, 118, 473-485. doi:10.1080/00207450601123563
[11] Yang, J. and Lin, B.C. (1992) Hypothalamic paraventricular nucleus plays a role in acupuncture analgesia through the central nervous system in the rat. Acupuncture electrotherapeutics research, 17, 209-220.
[12] Yang, J., Song, C.Y., Liu, W.Y., Wang, W. and Lin, B.C. (2006) Through the central V2, not V1 receptors influencing the endogenous opiate peptide system, arginine va-sopressin, not oxytocin in the hypothalamic paraventricular nucleus involves in the antinociception in the rat. Brain Research, 1069, 127-138. doi:10.1016/j.brainres.2005.11.045
[13] Kordower, J.H. and Bodnar, R.J. (1984) Vasopressin analgesia: Specificity of action and non-opioid effects. Peptides, 5, 747-756. doi:10.1016/0196-9781(84)90017-2
[14] Yang, J., Yang, Y., Chu, J.G., Wang, G., Xu, H.T., Liu,W.Y., Wang, C.H. and Lin, B.C. (2009) Endogenous opiate peptides in the spinal cord are involved in the analgesia of hypothalamic paraventricular nucleus in the rat. Peptides, 30, 740-744. doi:10.1016/j.peptides.2009.01.004
[15] Wang, D.X., Yang, J., Gu, Z.X., Song, C.Y., Liu, W.Y., Zhang, J., Li, X.P., Li, H., Wang, G., Song, C. and Lin, B.C. (2010) Arginine vasopressin induces rat caudate nucleus releasing acetylcholine to participate in pain modulation. Peptides, 31, 701-705. doi:10.1016/j.peptides.2009.11.027
[16] Yang, J., Chen, J.M., Liu, W.Y., Song, C.Y. and Lin, B.C. (2006) Arginine vaso-pressin in the caudate nucleus plays an antinociceptive role in the rat. Life Science, 79, 2086-2090. doi:10.1016/j.lfs.2006.07.005
[17] Lendvai, B., Sándor, N.T. and Sándor, A. (1993) Influence of selective opiate antagonists on striatal acetylcholine and dopamine release. Acta Physiologica Hungarica, 81, 19-28.
[18] Rada, P., Barson, J.R., Leibowitz, S.F. and Hoebel, B.G. (2010) Opioids in the hypothalamus control dopamine and acetylcholine levels in the nucleus accumbens. Brain Research, 1312, 1-9. doi:10.1016/j.brainres.2009.11.055
[19] Sandor, N.T., Lendvai, B. and Vizi, E.S. (1992) Effect of selective opiate antagonists on striatal acetylcholine and dopamine release. Brain Research Bulletin, 29, 369-373. doi:10.1016/0361-9230(92)90070-E
[20] Zimmermann, M. (1983) Ethical guidelines for investigations of experimental pain in conscious animal. Pain, 16, 109-110. doi:10.1016/0304-3959(83)90201-4
[21] Wang, C.H., Zhu, Y.X., Liu, Z., Song, C.Y. and Zhu, Y.X. (1987) Radioimmu-noassay for dynorphinA1-13. Acta Pharmacological Sinia, 8, 494-497.
[22] Zhu, Y.X., Guan, X.B., Cui, Y.Y., Liu, Z., Song, C.Y. amd Lin, B.C. (1986) Preparation for anti-β-endorphin serum and its radioimmuniassay. Acad J Sec Mli Med Univ, 7, 332-335.
[23] Zhu, Y.X., Liu, Z., Song, C.Y. and Lin, B.C. (1986) Preparation for L-enkephalin serum and its application. Acta Zoologica Sinia, 32, 213-219.
[24] Eva, C., Hadjicons-tantinou, M., Neff, N.H. and Meek, J.L. (1984) Acetylcholine measurement by high-performance liquid chromatography using an enzyme-loaded postcolumn reactor. Analytical Biochemistry, 143, 320-324. doi:10.1016/0003-2697(84)90670-5
[25] Zajac, P. and Kas-perska-Zajac, A. (1986) The role of arginine vasopressin (AVP) in pain transmission and perception. Postepy Higieny i Medycyny Doswiadczalnej, 55, 829-834.
[26] Yang, J., Song, C.Y., Liu, W.Y. and Lin, B.C. (2006) Only through the brain nuclei, arginine vasopressin regulates antinociception in the rat. Peptides, 27, 3341-3346. doi:10.1016/j.peptides.2006.08.019
[27] Yang, J., Liu, W.Y., Song, C.Y. and Lin, B.C. (2006) Only arginine vasopressin, not oxytocin and endogenous opiate peptides, in hypothalamic paraventricular nucleus play a role in acupuncture analgesia in the rat. Brain Research Bulletin, 68, 453-458. doi:10.1016/j.brainresbull.2005.10.002
[28] Yang, J., Liu, W.Y., Song, C.Y. and Lin, B.C. (2006) Through central arginine vasopressin, not oxytocin and endogenous opiate peptides, glutamate sodium induces hypothalamic paraventricular nucleus enhancing acupuncture analgesia in the rat. Neuroscience Research, 54, 49-56. doi:10.1016/j.neures.2005.10.006
[29] Dussor, G.O., Helesic, G., Hargreaves, K.M. and Flores, C.M. (2004) Cholinergic modulation of nociceptive responses in vivo and neuropeptide release in vitro at the level of the primary sensory neuron. Pain, 107, 22-32. doi:10.1016/j.pain.2003.09.022
[30] Schechtmann, G., Song, Z., Ultenius, C., Meyerson, B.A. and Linderoth, B. (2008) Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain, 139, 136-145. doi:10.1016/j.pain.2008.03.023
[31] Hama, A.T., Lloyd, G.K. and Menzaghi, F. (2001) The antinociceptive effect of intrathecal administration of epibatidine with clonidine or neostigmine in the formalin test in rats. Pain, 91, 131-138. doi:10.1016/S0304-3959(00)00425-5
[32] Honda, K., Harada, A., Takano, Y. and Kamiya, H. (2000) Involvement of M3 muscarinic receptors of the spinal cord in formalin-induced nociception in mice. Brain Research, 859, 38-44. doi:10.1016/S0006-8993(99)02456-7
[33] Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B. and Morris, H.R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 258, 577-580. doi:10.1038/258577a0
[34] Goldstenin, A., Tachibana, S., Lowney, L.I., Hunkapiller, M. and Hood, L. (1979) Dynor-phin-(1-13), an extraordinarily potent opioid peptide. Proceed-ings of the National Academy of Sciences of USA, 76, 6666-6670. doi:10.1073/pnas.76.12.6666
[35] Millan, M.J. and Herz, A. (1985) The endocrinology of the opioids. International Review of Neurobiology, 26, 1-83. doi:10.1016/S0074-7742(08)60072-0
[36] Bodnar, R.J. (2010) Endogenous opiates and behavior: 2009. Peptides, 31, 2325-2359. doi:10.1016/j.peptides.2010.09.016
[37] Herz, A. and Millan, M.J. (1990) Opioids and opioid receptors mediating antinoci-ception at various levels of the neuraxis. Physiologia Bohe-moslovaca, 39, 395-401.
[38] Rosenfeld, J.P. (1994) Interact-ing brain stem components of opiate-activated, descending, pain-inhibitory systems. Neuroscience & Biobehavioral Reviews, 18, 403-409. doi:10.1016/0149-7634(94)90053-1
[39] Stamford, J.A. (1995) Descending control of pain. British Journal of Anaesthesia, 75, 217-227.
[40] Zhao, Z.Q. (2008) Neural mechanism underlying acupuncture analgesia. Progress in Neurobiology, 85, 355-375. doi:10.1016/j.pneurobio.2008.05.004
[41] Lapchak, P.A., Araujo, D.M. and Collier, B. (1989) Regulation of endogenous acetylcholine release from mammalian brain slices by opiate receptors: Hippocampus, striatum and cerebral cortex of guinea-pig and rat. Neuroscience, 31, 313-325. doi:10.1016/0306-4522(89)90376-X
[42] Oron, L., Sarne, Y. and Michaelson, D.M. (1991) Effect of opioid peptides on electrically evoked acetylcholine release from Torpedo elec-tromotor neurons. Neuroscience Letters, 125, 231-234. doi:10.1016/0304-3940(91)90036-S
[43] Toide, K. (2006) Basic research on analgesia: Basis of pain and novel pain targets. Nippon Yakurigaku Zasshi, 128, 321-325. doi:10.1254/fpj.128.321
[44] Li, Y.J., Zhang, Z.H., Chen, J.Y. and Qiao, J.T. (1994) Effects of intrathecal naloxone and atro-pine on the nociceptive suppression induced by norepinephrine and serotonin at the spinal level in rats. Brain Research, 666, 113-116. doi:10.1016/0006-8993(94)90290-9
[45] Arenas, E., Alberch, J., Sanchez Arroyos, R. and Marsal, J. (1990) Effect of opioids on acetylcholine release evoked by K+ or glutamic acid from rat neostriatal slices. Brain Research, 523, 51-56. doi:10.1016/0006-8993(90)91633-R

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.