Share This Article:

Catalytic Reduction of Benzaldehyde Under Hydrogen Flow over Nickel-Containing Mesoporous Silica Catalysts

Abstract Full-Text HTML Download Download as PDF (Size:764KB) PP. 73-80
DOI: 10.4236/ojpc.2012.21010    5,320 Downloads   11,085 Views   Citations

ABSTRACT

The hydrogenation of benzaldehyde over a series of nickel-containing mesoporous silicas with different nickel contents was studied at atmospheric pressure in the range temperature of 393 - 513 K under H2 ?ow. These materials (noted Nin-HMS with n = Si/Ni = 50, 25, 15) have been prepared at room temperature using a route based on hydrogen bonding and self-assembly between neutral primary amine micelles (S0) and neutral inorganic precursors (I0). They were characterized by their chemical analysis, BET surface area, XRD, FT-IR, and SEM microscopy. The obtained products were benzylalcohol, toluene, benzene with yields depending on the nickel content (Si/Ni ratio) and reaction temperature. The products of benzaldehyde hydrogenation (benzylalcohol, and toluene) and hydrogenolysis (benzene) were preferentially formed at low/middle and high reaction temperature respectively. The mesoporous Ni-containing materials were very active hydrogenation catalysts with almost 90% selectivity to benzylalcohol product and showed excellent stability. A mechanism in which the reaction could be initiated by a benzaldehyde reduction over Nin-HMS materials under hydrogen flow with formation of reaction products is proposed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Saadi, K. Lanasri, K. Bachari, D. Halliche and C. Rabia, "Catalytic Reduction of Benzaldehyde Under Hydrogen Flow over Nickel-Containing Mesoporous Silica Catalysts," Open Journal of Physical Chemistry, Vol. 2 No. 1, 2012, pp. 73-80. doi: 10.4236/ojpc.2012.21010.

References

[1] M. A. Vannice and R. L. Garten, “CO Hydrogenation Reactions over Titania-Supported Nickel,” Journal of Catalysis, Vol. 66, No. 1, 1980, pp. 242-247.
[2] M. Fiefelder, “Practical Catalytic Hydrogenation: Technics and Applications,” Wiley-Interscience, New York, 1971.
[3] P. N. Rylander, “Catalytic Hydrogenation in Organic Synthesis,” Academic Press, London, 1979.
[4] P. N. Rylander, “Hydrogenation Methods,” Academic Press, London, 1985.
[5] K. Yoshida, C. Gonzalez-Arellano, R. Luque and P. L. Gai, “Efficient Hydrogenation of Carbonyl Compounds Using Low-Loaded Supported Copper Nanoparticles under Microwave Irradiation,” Applied Catalysis A: General, Vol. 379, No. 1-2, 2010, pp. 38-44. doi:10.1016/j.apcata.2010.02.028
[6] R. Rao, A. Dandekar, R. T. K. Baker and M. A. Vannice, “Properties of Copper Chromite Catalysts in Hydrogenation Reactions,” Journal of Catalysis, Vol. 171, No. 2, 1997, pp. 406-419. doi:10.1006/jcat.1997.1832
[7] D. Haffad, U. Kameswari, M. M. Bettahar, A. Chambellan and J. C. Lavalley, “Reduction of Benzaldehyde on Metal Oxides,” Journal of Catalysis, Vol. 172, No. 1, 1997, pp. 85-92. doi:10.1006/jcat.1997.1854
[8] A. Saadi, Z. Rassoul, J. Barrault and M. M. Bettahar, “Hydrogénation Sélective de la Cinnamaldéhyde en Alcool Cinnamique sur de Catalyseurs Supportés à Base de Cuivre,” Journal of Algerian Chemical Society, Vol. 9, No. 2, 1999, pp. 269-276.
[9] A. Aboulayt, A. Chambellan, M. Marzin, J. Saussey, F. Maugé, J. C. Lavalley, C. Mercier and R. Jacquot, “Study of the Hydrogenation of Methyl Benzoate to Benzaldehyde on Various Metal Oxides,” Studies in Surface Science and Catalysis, Vol. 78, 1993, pp. 131-138. doi:10.1016/S0167-2991(08)63312-1
[10] A. Saadi, M. M. Bettahar and Z. Rassoul, “Reduction of Benzaldehyde on Copper Supported on SiO2. Effect of Method of Preparation,” Studies in Surface Science and Catalysis, Vol. 130, 2000, pp. 2261-2266. doi:10.1016/S0167-2991(00)80805-8
[11] A. Saadi, R. Merabti, M. M. Bettahar and Z. Rassoul, “Catalyseurs Cu/MO (M= Mg, Ca, Sr). Caractérisation par des Réactions Tests,” Journal of Algerian Chemical Society, Vol. 11, No. 2, 2001, pp. 231-240.
[12] R. Merabti, A. Saadi, Z. Rassoul and M. M. Bettahar, “Caractérisations Physico-Chimiques des Catalyseurs à Base de Nickel Supportés,” Journal of Algerian Chemical Society, Vol. 16, No. 1, 2006, pp. 39-47.
[13] M. A. Keane, “Gas Phase Hydrogenation/Hydrogenolysis of Benzaldehyde and O-Tolualdehyde over Ni/SiO2,” Journal of Molecular Catalysis A: Chemical, Vol. 118, No. 2, 1997, pp. 261-269. doi:10.1016/S1381-1169(96)00386-X
[14] R. Hubaut, J. P. Bonnelle and M. Daage, “Selective Hydrogenation of Heavy Polyunsaturated Molecules on Copper-Chromium Catalysts,” Journal of Molecular Catalysis, Vol. 55, No. 1, 1989, pp. 170-183. doi:10.1016/0304-5102(89)80251-2
[15] D. Poondi and M. A. Vannice, “The Influence of MSI (Metal-Support Interactions) on Phenylacetaldehyde Hydrogenation over Pt Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 124, No. 1, 1997, pp. 79-89. doi:10.1016/S1381-1169(97)00066-6
[16] M. W. De Lange, J. G. Van Ommen and L. Lefferts, “Deoxygenation of Benzoic Acid on Metal Oxides: 2. Formation of Byproducts,” Applied Catalysis A: General, Vol. 231, No. 1-2, 2002, pp. 17-26. doi:10.1016/S0926-860X(01)00702-5
[17] S. Paganelli, U. Matteoli, A. Scrivanti and C. Botteghi, “Pt0-Complexes as Catalyst Precursors for Homogeneous Carbon=Carbon and Carbon=Oxygen Double Bond Hydrogenation,” Journal of Organometallic Chemistry, Vol. 397, No. 3, 1990, pp. 375-381. doi:10.1016/0022-328X(90)85337-X
[18] J. A. Schreifels, P. C. Maybury and W. E. Swartz, “X-Ray Photoelectron Spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile,” Journal of Catalysis, Vol. 65, No. 1, 1980, pp. 195-206. doi:10.1016/0021-9517(80)90294-8
[19] A. Saadi, R. Merabti, Z. Rassoul and M. M. Bettahar, “Hydrogenation of Benzaldehyde over Supported Nickel Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 253, No. 1-2, 2006, pp. 79-85. doi:10.1016/j.molcata.2006.03.003
[20] M. A. Vannice, “Hydrogenation of co and Carbonyl Functional Groups,” Catalysis Today, Vol. 12, No. 2-3, 1992, pp. 255-267.
[21] C. T. Kresge, M. E. Leonowicz, W. J. Roth and J. C. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, Vol. 359, No. 6397, 1992, pp. 710-712. http://134.243.5.70/ASSETS/87CB6FBC90C84546BA13660DB519F346/200207j5.pdf
[22] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,” Journal of American Chemical Society, Vol. 114, No. 27, 1992, pp. 10834-10843. doi:10.1021/ja00053a020
[23] P. T. Tanev, M. Chibwe and T. J. Pinnavaia, “Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds,” Nature, Vol. 368, 1994, pp. 321-323. doi:10.1038/368321a0
[24] A. Yin, J. Qu, X. Guo, W. L. Dai and K. Fan, “The Influence of B-Doping on the Catalytic Performance of Cu/HMS Catalyst for the Hydrogenation of Dimethyloxalate,” Applied Catalysis A: General, Vol. 400 No. 1-2, 2011, pp. 39-47. doi:10.1016/j.apcata.2011.04.011
[25] A. Sayari, “Catalysis by Crystalline Mesoporous Molecular Sieves,” Chemistry of Materials, Vol. 8, No. 8, 1996, pp. 1840-1852. doi:10.1021/cm950585+
[26] A. Yin, C. Wen, X. Guo, W. L. Dai and K. Fan, “Influence of Ni Species on the Structural Evolution of Cu/SiO2 Catalyst for the Chemoselective Hydrogenation of Dimethyl Oxalate,” Journal of Catalysis, Vol. 280, No. 1, 2011, pp. 77-88. doi:10.1016/j.jcat.2011.03.006
[27] C. Y. Ma, J. Cheng, H. L. Wang, Q. Hu, H. Tian, C. He and Z. P. Hao, “Characteristics of Au/HMS Catalysts for Selective Oxidation of Benzyl Alcohol to Benzaldehyde,” Catalysis Today, Vol. 158, No. 3-4, 2010, pp. 246-251. doi:10.1016/j.cattod.2010.03.080
[28] E. S. Vasiliadou and A. A. Lemonidou, “Investigating the Performance and Deactivation Behaviour of Silica-Supported Copper Catalysts in Glycerol Hydrogenolysis,” Applied Catalysis A: General, Vol. 396, No. 1-2, 2011, pp. 177-185. doi:10.1016/j.apcata.2011.02.014
[29] A. Tuel, I. Arcon and J. M. M. Millet, “Investigation of Structural Iron Species in Fe-Mesoporous Silicas by Spectroscopic Techniques,” Journal of the Chemical Society, Faraday Transactions, Vol. 94, No. 23, 1998, pp. 3501-3510. doi:10.1039/A806912C
[30] X. Lu and Y. Yuan, “Copper-Containing Hexagonal Mesoporous Silicas for Styrene Epoxidation Using Tert-Butylhydroperoxide,” Applied Catalysis A: General, Vol. 365, No. 2, 2009, pp. 180-186. doi:10.1016/j.apcata.2009.06.012
[31] K. Bachari, A. Touileb, N. Tahir, A. Saadi, D. Halliche and O. Cherifi, “Catalytic Propeties of Cr-HMS Materials in the Benzylation of Benzene with Benzylchloride,” Kinetics and Catalysis, Vol. 52, No. 1, 2011, pp. 48-54. doi:10.1134/S0023-158411010022
[32] A. Saadi, Z. Rassoul and M. M. Bettahar, “Gas Phase Hydrogenation of Benzaldehyde over Supported Copper Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 164, No. 1-2, 2000, pp. 205-216. doi:10.1016/S1381-1169(00)00199-0
[33] R. Merabti, K. Bachari, D. Halliche, Z. Rassoul and A. Saadi, “Synthesis and Characterization of Activated Copper or Nickel and Their Catalytic Behavior towards Benzaldehyde Hydrogenation,” Reaction Kinetics, Mechanisms and Catalysis, Vol. 101, 2010, pp 195-208. doi:10.1007/S11144-0100215-x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.