Share This Article:

Gene Expression Profiling during Wilting in Chickpea Caused by Fusarium oxysporum F. sp. Ciceri

Abstract Full-Text HTML Download Download as PDF (Size:864KB) PP. 190-201
DOI: 10.4236/ajps.2012.32023    6,294 Downloads   12,139 Views   Citations

ABSTRACT

Fusarium oxysporum f. sp. ciceri (Foc), one of the most important fungal pathogen of chickpea, is a constant threat to this crop plant. In the present study gene expression analysis of chickpea roots during Foc infection was performed using various approaches. cDNAs derived from total mRNA during infection process of susceptible (JG62)and resistant (Digvijay) cultivars, were amplified using random oligonucleotides. Sequence characterization of differentially expressed transcripts revealed their homology with many plant genes essential for various metabolic functions including defense. Further, expression patterns of specific candidate gene transcripts were analyzed in the Foc inoculated and uninoculated resistant and susceptible chickpea cultivars, on day 6 of infection. Semiquantitative RT-PCR analysis of defense related genes was performed using gene specific oligonucleotides in resistant and susceptible chickpea cultivars. The expression of fungal pathogenesis related genes and their race specific response was determined throughout the course of chickpea-Foc interaction. Temporal expression and race specific response of plant defense related and fungal virulence genes were studied in the resistant and susceptible cultivars of chickpea inoculated with three races of Foc highlighting the host-pathogen interactions. Few genes, involved in chickpea defense against Fusarium wilt which were not reported previously were unveiled in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Gurjar, A. Giri and V. Gupta, "Gene Expression Profiling during Wilting in Chickpea Caused by Fusarium oxysporum F. sp. Ciceri," American Journal of Plant Sciences, Vol. 3 No. 2, 2012, pp. 190-201. doi: 10.4236/ajps.2012.32023.

References

[1] FAO, 2007. http://faostat.fao.org/
[2] C. H. Beckman, “The Nature of Wilt Diseases of Plants,” American Phytopathological Society, St. Paul, 1987.
[3] G. M. Armstrong and J. K. Armstrong, “Formae Speciales and Races of Fusarium oxysporum Causing Wilt Disease,” In: P. E. Nelson, T. A. Toussoun and R. J. Cook, Eds., Fusarium: Disease, Biology, and Taxonomy, Pennsylvania State University, University Park, 1981, pp. 391-399.
[4] M. P. Haware and Y. L. Nene, “Races of Fusarium oxysporum f. sp. Ciceri,” Plant Disease, Vol. 66, 1982, pp 809-810. doi:10.1094/PD-66-809
[5] A. P. Giri, A. M. Harsulkar, A. G. Patankar, V. S. Gupta, M. N. Sainani and V. V. Deshpande, “Association of Induction of Protease and Chitinase in Chickpea Roots with Resistance to Fusarium oxysporum f. sp. Ciceri,” Plant Pathology, Vol. 47, No. 6, 1998, pp 693-699. doi:10.1046/j.1365-3059.1998.00299.x
[6] S. B. Nimbalkar, A. M. Harsulkar, A. P. Giri, M. N. Sainani, V. Franceschi and V. S. Gupta, “Differentially Expressed Gene Transcripts in Roots of Resistant and Susceptible Chickpea Plant (Cicer arietinum L.) upon Fusarium oxysporum Infection,” Physiologicaland Molecular Plant Pathology, Vol. 68, No. 4-6, 2006, pp. 176-188. doi:10.1016/j.pmpp.2006.10.003
[7] J. A. Seo, K. H. Han and J. H. Yu, “Multiple Roles of a Heterotrimeric G Protein Gamma Subunit in Governing Growth and Development of Aspergillus nidulans,” Genetics, Vol. 171, No. 1, 2005, pp. 81-89. doi:10.1534/genetics.105.042796
[8] M. P. Madrid, A. Di Pietro and M. I. G. Roncero, “Class V Chitin Synthase Determines Pathogenesis in the Vascular Wilt Fungus Fusarium oxysporum and Mediates Resistance to Plant Defence Compounds,” Molecular Microbiology, Vol. 47, No. 1, 2003, pp. 257-266. doi:10.1046/j.1365-2958.2003.03299.x
[9] B. Ramos, F. M. Alves-Santos, M. A. García-Sánchez, N. Martín-Rodrigues, A. P. Eslava and J. M. Díaz-Mínguez, “The Gene Coding for a New Transcription Factor (ftf1) of Fusarium oxysporum is Only Expressed during Infection of Common Bean,” Fungal Genetics and Biology, Vol. 44, No. 9, 2007, pp. 864-876. doi:10.1016/j.fgb.2007.03.003
[10] I. Iori, N. Fumio and T. Takashi, “Plant Colonization by the Vascular Wilt Fungus Fusarium oxysporum Requires Fow1, a Gene Encoding a Mitochondrial Protein,” Plant Cell, Vol. 14, No. 8, 2002, pp. 1869-1883. doi:10.1105/tpc.002576
[11] I. Iori, K. Makoto, I. Yuichiro and T. Takashi, “Fow2, a Zn(II)2Cys6-Type Transcription Regulator, Controls Plant Infection of the Vascular Wilt Fungus Fusarium oxysporum,” Molecular Microbiology, Vol. 63, No. 3, 2007, pp 737-753.
[12] H. C. van der Does, B. Lievens, L. Claes, P. M. Houterman, B. J. Cornelissen and M. Rep, “The Presence of a Virulence Locus Discriminates Fusarium oxysporum Isolates Causing Tomato Wilt from Other Isolates,” Environmental Microbiology, Vol. 10, No. 6, 2008, pp. 1475- 1485. doi:10.1111/j.1462-2920.2007.01561.x
[13] G. S. Gurjar, M. P. Barve, A. P. Giri and V. S. Gupta, “Identification of Indian Pathogenic Races of Fusarium oxysporum f. sp. ciceris with Gene Specific, ITS and Random Markers,” Mycologia, Vol. 101, 2009, pp. 484-495. doi:10.3852/08-085
[14] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, “Basic Local Alignment Search Tool,” Journal of Molecular Biology, Vol. 215, No. 3, 1990, pp. 403-410.
[15] W. Chen, N. J. Provart, J. Glazebrook, F. Katagiri, H. Chang, T. T. Eulgem, F. Mauch, S. Luan, G. Zou, S. A. Whitham, P. R. Budworth, Y. Tao, Z. Xie, X. Chen, S. Lam, J. A. Kreps, J. F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J. L. Dangl, X. Wang and T. Zhu, “Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses,” Plant Cell, Vol. 14, No. 3, 2002, pp. 559-574. doi:10.1105/tpc.010410
[16] T. Tokai, M. Fujimura, H. Inoue, T. Aoki, K. Ohta, T. Shibata, I. Yamaguchi and M. Kimura, “Concordant Evolution of Trichothecene 3-O-Acetyltransferase and an rDNA Species Phylogeny of Trichothecene-Producing and Nonproducing Fusaria and Other Ascomycetous Fungi,”. Microbiology, Vol. 151, 2005, pp. 509-519. doi:10.1099/mic.0.27435-0
[17] M. Rep, H. C. van der Does and B. J. Cornelissen, “Drifter, a Novel, Low Copy hAT-Like Transposon in Fusarium oxysporum is Activated during Starvation,”. Fungal Genetics and Biology, Vol. 42, No. 6, 2005, pp. 546- 553. doi:10.1016/j.fgb.2005.03.007
[18] R. Jeong, W. Lim, S. Kwon and K. Kim, “Identification of Glycine max Genes Expressed in Response to Soybean Mosaic Virus Infection,” Journal of Plant Pathology, Vol. 21, No. 1, 2005, pp. 47-54. doi:10.5423/PPJ.2005.21.1.047
[19] E. Logemann, S. C. Wu, J. Schr?der, E. Schmelzer, I. E. Somssich and K. Hahlbrock, “Gene Activation by UV Light, Fungal Elicitor or Fungal Infection in Petroselium crispum is Correlated with Repression of Cell Cycle-Related Genes,” Plant Journal, Vol. 8, 1995, pp. 865-876. doi:10.1046/j.1365-313X.1995.8060865.x
[20] H. G. McFadden, I. W. Wilson, R. M. Chapple and C. Dowd, “Fusarium Wilt (Fusarium oxysporum f. sp. vasinfectum) Genes Expressed during Infection of Cotton (Gossypium hirsutum),” Molecular Plant Pathology, Vol. 7, No. 2, 2004, pp. 87-101. doi:10.1111/j.1364-3703.2006.00327.x
[21] P. J. O’Donnell, M. R. Truesdale, C. M. Calvert, A. Dorans, M. R. Roberts and D. J. Bowles, “A Novel Tomato Gene That Rapidly Responds to Wound-and Pathogen-Related Signals,” Plant Journal, Vol. 14, No. 1, 1998, pp 137-142. doi:10.1046/j.1365-313X.1998.00110.x
[22] M. R. Roberts, S. A. J. Warner, R. Darby, E. K. Lim, J. Draper and D. J. Bowles, “Differential Regulation of a Glucosyl Transferase Gene Homologue during Defense Responses in Tobacco,” Journal of Experimental Botany, Vol. 50, 1999, pp. 407-410 . doi:10.1093/jexbot/50.332.405
[23] A. Sadanandom, Z. Poghosyan, D. J. Fairbairn and D. J. Murphy, “Differential Regulation of Plastidial and Cytosolic Isoforms of Peptide Methionine Sulfoxide Reductase in Arabidopsis,” Plant Physiology, Vol. 123, No. 1, 2000, pp. 255-263. doi:10.1104/pp.123.1.255
[24] A. De Beer and M. A. Vivier, “Vv-AMP1, a Ripening Induced Peptide from Vitis vinifera Shows Strong Antifungal Activity,” BMC Plant Biology, Vol. 8, No. 75, 2008, pp. 75-90. doi:10.1186/1471-2229-8-75
[25] S. L. Rutherford, “Between Genotype and Phenotype: Protein Chaperones and Evolvability,” Nature Reviews in Genetics, Vol. 4, No. 4, 2003, pp. 263-274. doi:10.1038/nrg1041
[26] R. Saikia, B. P. Singh, R. Kumar and D. K. Arora, “Detection of Pathogenesis-Related Proteins-Chitinase and β-1,3-Glucanase in Induced Chickpea,” Current Science, Vol. 89, 2005, pp. 659-663.
[27] S. M. Borch, K. Sletten and A. M. Hagen, 16th Nordic Congress on Allergology, Tromsoe, Abstract VI-19, June 1987, p. 65,.
[28] D. Lüttkopf, U. Müller, P. S. Skov, B. K. Ballmer-Weber, B. Wüthrich, K. S. Hansen, L. K. Poulsen, M. Kastner, D. Haustein and S. Vieths, “Comparison of Four Variants of a Major Allergen in Hazelnut (Corylus avellana) Cor a 1.04 with the Major Hazel Pollen Allergen Cor a 1.01,” Molecular Immunology, Vol. 38, 2002, pp. 515-525. doi:10.1016/S0161-5890(01)00087-6
[29] B. Bohle, A. Radakovics, B. Jahn-Schmid, K. Hoffmann-Sommergruber, G. F. Fischer and C. Ebner, “Bet v 1, the Major Birch Pollen Allergen, Initiates Sensitization to Api g 1, the Major Allergen in Celery: Evidence at the T Cell Level,” European Journal of Immunology, Vol. 33, 2003, pp. 3303-3310. doi:10.1002/eji.200324321
[30] P. Neudecker, K. Lehmann, J. Nerkamp, T. Haase, A. Wangorsch, K. Fotisch, S. Hoffmann, P. Rosch, S. Vieths and S. Scheurer, “Mutational Epitope Analysis of Pru av 1 and Api g 1, the Major Allergens of Cherry (Prunus avium) and Celery (Apium graveolens): Correlating IgE Reactivity with Three-Dimensional Structure,” Journal of Biochemistry, Vol. 376, No. 1, 2003, pp. 97-107. doi:10.1042/BJ20031057
[31] A. I. Saeed, V. Sharov, J. White, J. Li, W. Liang and N. Bhagabati, “TM4: A Free, Open-Source System for Microarray Data Management and Analysis,” Biotechniques, Vol. 34, No. 2, 2003, pp. 374-378.
[32] D. Foster-Hartnett, D. Danesh, S. Penuela, N. Sharapova, G. Endre, K. A. Vandenbosch, N. D. Young and D. A. Samac, “Molecular and Cytological Responses of Medicago truncatula to Erysiphe pisi,” Molecular Plant Pathology, Vol. 8, No. 3, 2007, pp. 307-319. doi:10.1111/j.1364-3703.2007.00395.x
[33] J. Taylor and L. A. Harrier, “Expression Studies of Plant Genes Differentially Expressed in Leaf and Root Tissues of Tomato Colonised by the Arbuscular Mycorrhizal Fungus Glomus mosseae,” Plant Molecular Biology, Vol. 51, No. 4, 2003, pp. 619-629. doi:10.1023/A:1022341422133
[34] S. Weidmann, L. Sanchez, J. Descombin, O. Chatagnier, S. Gianinazzi and V. Gianinazzi-Pearson, “Fungal Elicitation of Signal Transduction-Related Plant Genes Precedes Mycorrhiza Establishment and Requires the dmi3 Gene in Medicago truncatula,” Molecular Plant-Microbe Interaction, Vol. 17, No. 12, 2004, pp. 1385-1393. doi:10.1094/MPMI.2004.17.12.1385
[35] F. Daayf, A. Schmitt and R. R. Bélanger, “Evidence of Phytoalexins in Cucumber Leaves Infected with Powdery Mildew Following Treatment with Leaf Extracts of Reynoutria sacchalinensis,” Plant Physiol?gy, Vol. 113, 1997, pp. 719-727.
[36] A. C. Ramos-Valdivia, R. Heijden and R. Verpoorte, “Elicitor Mediated Induction of Anthraquinone Biosynthesis and Regulation of Isopentenyl Diphosphate Isomerase and Farnesyl Diphosphate Synthase Activities in Cell Suspension Cultures of Cinchona robusta How,” Planta, Vol. 203, 1997, pp. 155-161. doi:10.1007/s004250050177
[37] H. Kessmann and W. Barz, “Accumulation of Isoflavones and Pterocarpan Phytoalexins in Cell Suspension Cultures of Different Cultivars of Chickpea (Cicer arietinum L.),” Plant Cell Reports, Vol. 6, 1987, pp. 55-59. doi:10.1007/BF00269739
[38] H. Kessmann, S. Daniel and W. Barz, “Elicitation of Pterocarpan Phytoalexins in Cell Suspension Cultures of Different Chickpea (Cicer arietinum L.) Cultivars by an Elicitor from the Fungus Ascochyta rabiei,” Z. Naturforsch, Vol. 43, 1988, pp. 529-535.
[39] A. Arfaoui, A. El Hadrami, Y. Mabrouk, B. Sifi, A. Boudabous, I. El Hadrami, F. Daayf and M. Cherif, “Treatment of Chickpea with Rhizobium Isolates Enhances the Expression of Phenylpropanoid Defense-Related Genes in Response to Infection by Fusarium oxysporum f. sp. Ciceris,” Plant Physiology and Biochemistry, Vol. 45, No. 6-7, 2007, pp. 470-479. doi:10.1016/j.plaphy.2007.04.004
[40] P. Tudzynski and A. Sharon, “Fungal Pathogenicity Genes,” In: D. K. Arora and G. G. Khachatourians, Eds., Applied Mycology and Biotechnology, (3) Fungal Genomics, Elsevier Science, Amsterdam, 2003, pp. 187-212.
[41] J. A. Mayer, D. Kakhniashvili, D. A. Gremse, C. Campbell, R. Kramer, A. Schroers and R. S. Kaplan, “Bacterial Overexpression of Putative Yeast Mitochondrial Transport Proteins,” Journal of Bioenergy and Biomembrane, Vol. 29, 1997, pp, 541-547.
[42] S. Bartnicki-Garcia and Ch. E. Bracker, “Unique Properties of Chitosomes,” In: C. Nombela, Ed., Microbial Cell Wall Synthesis and Autolysis, Elsevier Science, Amsterdam, 1984, pp. 101-112.
[43] I. Mouyna, W. Morelle, M. Vai, M. Monod, B. Léchenne, T. Fontaine, A. Beauvais, J. Sarfati, M. C. Prévost, C. Henry and J. P. Latgé, “Deletion of GEL2 Encoding for a Beta (1-3) Glucanosyltransferase Affects Morphogenesis and Virulence in Aspergillus fumigates,” Molecular Microbiology, Vol. 56, 2005, pp. 1675-1688. doi:10.1111/j.1365-2958.2005.04654.x
[44] S. Cho and F. J. Muehlbauer, “Genetic Effect of Differentially Regulated Fungal Response Genes on Resistance to Necrotrophic Fungal Pathogens in Chickpea (Cicer arietinum L.),” Physiological and Molecular Plant Pathology, Vol. 64, No. 2, 2004, pp. 57-66. doi:10.1016/j.pmpp.2004.07.003
[45] X. Wang, A. El Hadrami, L. R. Adam and F. Daayf, “Local and Distal Gene Expression of pr-1 and pr-5 in Potato Leaves Inoculated with Isolates from the Old (US-1) and the New (US-8) Genotypes of Phytophthora infestans (Mont.) de Bary”. Environmental and Experimental Botany, Vol. 57, No. 1-2, 2006, pp. 70-79. doi:10.1016/j.envexpbot.2005.04.006
[46] J. Delgado-Jarana, A. L. Martínez-Rocha, R. Roldán-Rodriguez, M. I. G. Roncero and A. Di Pietro, “Fusa-rium oxysporum G-Protein β Subunit Fgb1 Regulates Hyphal Growth, Development, and Virulence through Multiple Signalling Pathways,” Fungal Genetics and Biology, Vol. 42, No. 1, 2004, pp. 61-72. doi:10.1016/j.fgb.2004.10.001

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.