Decreased bone mineral density in young male veterans on Pioglitazone

Abstract

Background and objective: Epidemiological and observational studies indicate that thiazolidinedione (TZD) therapy with rosiglitazone and pioglitazone is associated with an increased risk of fractures. The effect of TZDs on bone mineral density (BMD) in men with type 2 diabetes is still in debate. The objective of the study was to investigate changes in BMD and bone turnover markers (BTM) associated with Pioglitazone use in men. Design and Methods: This prospective cross sectional comparative study evaluated the changes in BMD and BTM in male veterans aged less than 55 years, with diabetes with or without use of pioglitazone. In a 6 month follow up study, main outcome measures included BMD at AP spine, femur and wrist; and BTM (osteocalcin and CTx) at a referral center, with no interventions. Results: Pioglitazone use was associated with significant decrease in BMD (annualized %change of >3%) at femoral neck, total hip and 1/3rd radius; increase in CTx by 29% and decrease in osteocalin by 20% at 6months. Conclusions: Even in young men pioglitazone use was associated with bone loss. The changes in BTM suggest effect of pioglitazone on both osteoblast and osteoclast activity.

Share and Cite:

Yaturu, S. , Davis, J. and Shi, R. (2012) Decreased bone mineral density in young male veterans on Pioglitazone. Journal of Diabetes Mellitus, 2, 35-39. doi: 10.4236/jdm.2012.21006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Strotmeyer, E.S. and Cauley, J.A. (2007) Diabetes mellitus, bone mineral density, and fracture risk. Current Opinion in Endocrinology, Diabetes and Obesity, 14, 429-435. doi:10.1097/MED.0b013e3282f1cba3
[2] Janghorbani, M., Feskanich, D., Willett, W.C. and Hu, F. (2006) Prospective study of diabetes and risk of hip fracture: The nurses’ health study. Diabetes Care, 29, 1573-1578. doi:10.2337/dc06-0440
[3] Strotmeyer, E.S., Cauley, J.A., Schwartz, A.V., Nevitt, M.C., Resnick, H.E., Bauer, D.C., Tylavsky, F.A., de Rekeneire, N., Harris, T.B. and Newman, A.B. (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: The health, aging, and body composition study. Archives of Internal Medicine, 165, 1612-1617. doi:10.1001/archinte.165.14.1612
[4] Cauley, J.A., Lui, L.Y., Ensrud, K.E., Zmuda, J.M., Stone, K.L., Hochberg, M.C. and Cummings, S.R. (2005) Bone mineral density and the risk of incident nonspinal fractures in black and white women. Journal of the American Medical Association (JAMA), 293, 2102-2108. doi:10.1001/jama.293.17.2102
[5] Schwartz, A.V. and Sellmeyer, D.E. (2004) Women, type 2 diabetes, and fracture risk. Current Diabetes Reports, 4, 364-369. doi:10.1007/s11892-004-0039-z
[6] Nicodemus, K.K. and Folsom, A.R. (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care, 24, 1192-1197. doi:10.2337/diacare.24.7.1192
[7] Wallace, C., Reiber, G.E., LeMaster, J., Smith, D.G., Sullivan, K., Hayes, S. and Vath, C. (2002) Incidence of falls, risk factors for falls, and fall-related fractures in individuals with diabetes and a prior foot ulcer. Diabetes Care, 25, 1983-1986. doi:10.2337/diacare.25.11.1983
[8] Schwartz, A.V., Hillier, T.A., Sellmeyer, D.E., Resnick, H.E., Gregg, E., Ensrud, K.E., Schreiner, P.J., Margolis, K.L., Cauley, J.A., Nevitt, M.C., Black, D.M. and Cummings, S.R. (2002) Older women with diabetes have a higher risk of falls: A prospective study. Diabetes Care, 25, 1749-1754. doi:10.2337/diacare.25.10.1749
[9] Ohldin, A., Floyd, J. (2003) Unrecognized risks among Veterans with hip fractures: Opportunities for improvements. Journal of the Southern Orthopaedic Association, 12, 18-22.
[10] Kahn, S.E., Haffner, S.M., Heise, M.A., Herman, W.H., Holman, R.R., Jones, N.P., Kravitz, B.G., Lachin, J.M., O’Neill, M.C., Zinman, B. and Viberti, G. (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. New England Journal of Medicine, 355, 2427-2443. doi:10.1056/NEJMoa066224
[11] Douglas, I.J., Evans, S.J., Pocock, S. and Smeeth, L. (2009) The risk of fractures associated with thiazolidinediones: A self-controlled case-series study. PLoS Medicine, 6, e1000154. doi:10.1371/journal.pmed.1000154
[12] Jones, S.G., Momin, S.R., Good, M.W., Shea, T.K. and Patric, K. (2009) Distal upper and lower limb fractures associated with thiazolidinedione use. American Journal of Managed Care, 15, 491-496.
[13] Dormuth, C.R., Carney, G., Carleton, B., Bassett, K. and Wright, J.M. (2009) Thiazolidinediones and fractures in men and women. Archives of Internal Medicine, 169, 1395-1402. doi:10.1001/archinternmed.2009.214
[14] Bodmer, M., Meier, C., Kraenzlin, M.E. and Meier, C.R. (2009) Risk of fractures with glitazones: A critical review of the evidence to date. Drug Safety, 32, 539-547. doi:10.2165/00002018-200932070-00001
[15] Bilik, D., McEwen, L.N., Brown, M.B., Pomeroy, N.E., Kim, C., Asao, K., Crosson, J.C., Duru, O.K., Ferrara, A., Hsiao, V.C., Karter, A.J., Lee, P.G., Marrero, D.G., Selby, J.V., Subramanian, U. and Herman, W.H. (2010) Thiazolidinediones and fractures: Evidence from translating research into action for diabetes. Journal of Clinical Endocrinology & Metabolism, 95, 4560.
[16] Lecka-Czernik, B., Gubrij, I., Moerman, E.J., Kajkenova, O., Lipschitz, D.A., Manolagas, S.C. and Jilka, R.L. (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. Journal of Cellular Biochemistry, 74, 357-371. doi:10.1002/(SICI)1097-4644(19990901)74:3<357::AID-JCB5>3.0.CO;2-7
[17] Lecka-Czernik, B., Moerman, E.J., Grant, D.F., Lehmann, J.M., Manolagas, S.C. and Jilka, R.L. (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology, 143, 2376-2384. doi:10.1210/en.143.6.2376
[18] Gimble, J.M., Robinson, C.E., Wu, X., Kelly, K.A., Rodriguez, B.R., Kliewer, S.A., Lehmann, J.M. and Morris, D.C. (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Molecular Pharmacology, 50, 1087-1094.
[19] Ali, A.A., Weinstein, R.S., Stewart, S.A., Parfitt, A.M., Manolagas, S.C. and Jilka, R.L. (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology, 146, 1226-1235. doi:10.1210/en.2004-0735
[20] Glintborg, D., Andersen, M., Hagen, C., Heickendorff, L. and Hermann, A.P. (2008) Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: A randomized, placebo-controlled trial. Journal of Clinical Endocrinology & Metabolism, 93, 1696-1701. doi:10.1210/jc.2007-2249
[21] Schwartz, A.V., Sellmeyer, D.E., Vittinghoff, E., Palermo, L., Lecka-Czernik, B., Feingold, K.R., Strotmeyer, E.S., Resnick, H.E., Carbone, L., Beamer, B.A., Park, S.W., Lane, N.E., Harris, T.B. and Cummings, S.R. (2006) Thiazolidinedione use and bone loss in older diabetic adults. Journal of Clinical Endocrinology & Metabolism, 91, 3349-3354. doi:10.1210/jc.2005-2226
[22] Grey, A., Bolland, M., Gamble, G., Wattie, D., Horne, A., Davidson, J. and Reid, I.R. (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: A randomized, controlled trial. Journal of Clinical Endocrinology & Metabolism, 92, 1305-1310. doi:10.1210/jc.2006-2646
[23] Yaturu, S., Bryant, B. and Jain, S.K. (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care, 30, 1574-1576. doi:10.2337/dc06-2606
[24] Berberoglu, Z., Gursoy, A., Bayraktar, N., Yazici, A.C., Bascil Tutuncu, N. and Guvener Demirag, N. (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. Journal of Clinical Endocrinology & Metabolism, 92, 3523-3530. doi:10.1210/jc.2007-0431

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.