Rabies DNA Vaccines: Current Status and Future

DOI: 10.4236/wjv.2012.21005   PDF   HTML     6,180 Downloads   13,168 Views   Citations


Rabies continues to be a significant cause of human and animal mortality, despite the availability of safe and effective prophylactics. Apart from limited access, the cost and complex schedules of rabies biologics often impact on the success of post-exposure prophylaxis in humans in the endemic countries. Mass vaccination of dogs, critical in rabies control, often fails to achieve its goal in rabies-endemic countries due to logistic, animal and vaccine-related issues. DNA vaccination has been proposed as a cheaper and efficient strategy for rabies prophylaxis, and its feasibility has been demonstrated in a number of animal models including companion animals, since 1994. Despite the proven efficacy, the technology suffers from a few drawbacks that limit its large-scale application, such as delayed and weaker immune responses in larger animals. Recent advances in the field of vector design and delivery hold promise for enhancement of rabies DNA vaccine efficacy. The present article provides an overview of developments in the field of DNA rabies vaccination and its future prospects.

Share and Cite:

P. Ullas, A. Desai and S. Madhusudana, "Rabies DNA Vaccines: Current Status and Future," World Journal of Vaccines, Vol. 2 No. 1, 2012, pp. 36-45. doi: 10.4236/wjv.2012.21005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] World Health Organisation, “WHO Expert Consultation on Rabies,” Technical Report Series, Vol. 931, 2005, pp. 1-88.
[2] C. E. Rupprecht, C. A. Hanlon and T. Hemachuda, “Rabies Re-Examined,” Lancet Infectious Diseases, Vol. 2, No. 6, 2002, pp. 327-343. doi:10.1016/S1473-3099(02)00287-6
[3] C. Bahloul, D. Taieb, M. F. Diouani, S. B. Ahmed, Y. B. Chtourou and B. I. B’chir, “Field Trials of a Very Potent Rabies DNA Vaccine Which Induced Long Lasting Virus Neutralizing Antibodies and Protection in Dogs in Experimental Conditions,” Vaccine, Vol. 24, No. 8, 2006, pp. 1063-1072. doi:10.1016/j.vaccine.2005.09.016
[4] M. A. Liu, “DNA Vaccines: An Historical Perspective and View to the Future,” Immunological Reviews, Vol. 239, No. 1, 2011, pp. 62-84. doi:10.1111/j.1600-065X.2010.00980.x
[5] D. C. Tang, M. DeVit and S. A. Johnston, “Genetic Immunization is a Simple Method for eliciting an Immune Response,” Nature, Vol. 356, No. 6365, 1992, pp. 152-154. doi:10.1038/356152a0
[6] H. L. Robinson, “Nucleic Acid Vaccines: An Overview,” Vaccine, Vol. 15, No. 8, 1997, pp. 785-787.
[7] J. A. Williams, A. E. Carnes and C. P. Hodgson, “Plasmid DNA vaccine Vector Design: Impact on Efficacy, Safety and Upstream Production,” Biotechnology Advances, Vol. 27, No. 4, 2009, pp. 353-370. doi:10.1016/j.biotechadv.2009.02.003
[8] F. Faurez, D. Dory, V. Le Moigne, R. Gravier and A. Jestin, “ Biosafety of DNA Vaccines: New Generation of DNA Vectors and Current Knowledge on the Fate of Plasmids after Injection,” Vaccine, Vol. 28, No. 23, 2010, pp. 3888-3895. doi:10.1016/j.vaccine.2010.03.040
[9] Z. Q. Xiang, S. L. Spitalnik, M. Tran, W. H. Wunner, J. Cheng and H. C. Ertl, “Vaccination with a Plasmid Vector Carrying Rabies Virus Glycoprotein Gene Induces Protective Immunity against Rabies Virus,” Virology, Vol. 199, No. 1, 1994, pp. 132-140. doi:10.1006/viro.1994.1105
[10] Z. Q. Xiang, S. L. Spitalnik, J. Cheng, J. Erikson, B. Wojczyk and H. C. Ertl, ”Immune Responses to Nucleic Acid Vaccines to Rabies Virus,” Virology, Vol. 209, No. 2, 1995, pp. 569-579. doi:10.1006/viro.1995.1289
[11] Z. Q. Xiang, Z. He, Y. Wang and H. C. Ertl, “The Effect of Interferon-γ on Genetic Immunization,” Vaccine, Vol. 15, No. 8, 1997, pp. 896-898.
[12] N. B. Ray, L. C. Ewalt and D. L. Lodmell, “Nanogram Quantities of Plasmid DNA Encoding the Rabies Virus Glycoprotein Protect Mice against Lethal Rabies Virus Infection,” Vaccine, Vol. 15, No. 8, 1997, pp. 892-895. doi:10.1016/S0264-410X(96)00281-2
[13] D. L. Lodmell, N. B. Ray, J. T. Ulrich and L. C. Ewalt, “DNA Vaccination of Mice against Rabies Virus: Effects of the Route of vaccination and the Adjuvant Monophosphoryl Lipid A (MPL),” Vaccine, Vol. 18, No. 11-12, 2000, pp. 1059-1066. doi:10.1016/S0264-410X(99)00352-7
[14] L. Fischer, J. Minke, N. Dufay, P. Baudu and J. C. Audonnet, “Rabies DNA Vaccine in the Horse: Strategies to Improve Serological Responses,” Vaccine, Vol. 21, No. 31, 2003, pp. 4593-4596. doi:10.1016/S0264-410X(03)00504-8
[15] M. Margalith and A. Vilalta, “Sustained Protective Rabies Neutralizing Antibody Titers after Administration of Cationic Lipid-Formulated pDNA Vaccine,” Genetic Vaccines and Therapy, Vol. 4, No. 2, 2006, pp. 1-6.
[16] M. Kaur, A. Saxena, A. Rai and R. Bhatnagar, “Rabies DNA Vaccine Encoding Lysosome-Targeted Glycoprotein Supplemented with Emulsigen-D Confers Complete Protection in Preexposure and Postexposure Studies in BALB/c Mice,” FASEB Journal, Vol. 24, No. 1, 2010, pp. 173-183. doi:10.1096/fj.09-138644
[17] D. L.Lodmell, N. B. Ray and L. C. Ewalt, ” Gene Gun Particle-Mediated Vaccination with plasmid DNA Confers Protective Immunity against Rabies Virus Infection,” Vaccine, Vol. 16, No. 2-3, 1998, pp. 115-118. doi:10.1016/S0264-410X(97)88325-9
[18] D. L. Lodmell, M. J. Parnell, J. R. Bailey, L. C. Ewalt and C. A. Hanlon, “Rabies DNA Vaccination of Non-Human Primates: Post-Exposure Studies Using Gene Gun Methodology That Accelerates Induction of Neutralizing Antibody and Enhances Neutralizing Antibody Titers,” Vaccine, Vol. 20, No. 17-18, 2002, pp. 2221-2228. doi:10.1016/S0264-410X(02)00143-3
[19] D. L. Lodmell, M. J. Parnell, J. T. Weyrich, D. L. Lodmell, M. J. Parnell, J. R. Bailey, L. C. Ewalt and C. A. Hanlon, “One-Time Gene Gun or Intramuscular Rabies DNA Vaccination of Non-Human Primates: Comparison of Neutralizing Antibody Responses and Protection against Rabies Virus 1 Year after Vaccination,” Vaccine, Vol. 20, No. 5-6, 2001, pp. 838-844. doi:10.1016/S0264-410X(01)00392-9
[20] S. Biswas, G. S. Reddy, V. A. Srinivasan and P. N. Rangarajan, “Preexposure Efficacy of a Novel Combination DNA and Inactivated Rabies Virus Vaccine,” Human Gene Therapy, Vol. 12, No. 15, 2001, pp. 1917-1922. doi:10.1089/104303401753153965
[21] A. R. Pinto, A. Reyes-Sandoval and H. C. J. Ertl, “Chemokines and TRANCE as Genetic Adjuvants for a DNA Vaccine to Rabies Virus,” Cellular Immunology, Vol. 224, No. 2, 2003, pp. 106-113. doi:10.1016/j.cellimm.2003.08.006
[22] J. E. Osorio, C. C. Tomlinson, R. S. Frank, E. J. Haanes, K. Rushlow and J. R. Haynes, “Immunization of Dogs and Cats with a DNA Vaccine against Rabies Virus,” Vaccine, Vol. 17, No. 9-10, 1999, pp. 1109-1116. doi:10.1016/S0264-410X(98)00328-4
[23] E. Tesoro-Cruz, R. Calderon-Rodriguez, R. HernandezGonzalez, F. Blanco-Favela and A. Aguilar-Setien, “Intradermal DNA Vaccination in Ear Pinnae is an Efficient Route to Protect Cats against Rabies Virus,” Veterinary Research, Vol. 39, No. 2, 2008, p. 16. doi:10.1051/vetres:2007054
[24] L. Cupillard, V. Juillard, S. Latour, G. Colombet, N. Cachet and S. Richard, “Impact of Plasmid Supercoiling on the Efficacy of a Rabies DNA Vaccine to Protect Cats,” Vaccine, Vol. 23, No. 16, 2005, pp. 1910-1916. doi:10.1016/j.vaccine.2004.10.018
[25] S. Patial, V. K. Chaturvedi, A. Rai, M. Saini, R. Chandra, Y. Saini and P. K. Gupta, “Virus Neutralizing Antibody Response in Mice and Dogs with a Bicistronic DNA Vaccine Encoding Rabies Virus Glycoprotein and Canine Parvovirus VP2,” Vaccine, Vol. 25, No. 20, 2007, pp. 4020-4028. doi:10.1016/j.vaccine.2007.02.051
[26] D. L. Lodmell and L. C. Ewalt, “Post-Exposure DNA Vaccination Protects Mice against Rabies Virus,” Vaccine, Vol. 19, No. 17-19, 2001, pp. 2468-2473. doi:10.1016/S0264-410X(00)00475-8
[27] E. Tesoro-Cruz, I. A. Feria Romero, J. G. Lopez Mendoza, S. Orozco Suarez, R. Hernandez Gonzalez and F. B. Favela, “Efficient Post-Exposure Prophylaxis against Rabies by Applying a Four-Dose DNA Vaccine Intranasally,” Vaccine, Vol. 26, No. 52, 2008, pp. 6936-6944. doi:10.1016/j.vaccine.2008.09.083
[28] C. Bahloul, Y. Jacob, N. Tordo and P. Perrin, “DNA-Based Immunization for Exploring the Enlargement of Immunological Cross-Reactivity against the Lyssaviruses,” Vaccine, Vol. 16, No. 4, 1998, pp. 417-425. doi:10.1016/S0264-410X(97)00204-1
[29] L. H. Nel, M. Niezgoda, C. A. Hanlon, P. A. Morril, P. A. Yager and C. E. Rupprecht, “A comparison of DNA Vaccines for the Rabies-Related Virus, Mokola,” Vaccine, Vol. 21, No. 19-20, 2003, pp. 2598-2606. doi:10.1016/S0264-410X(03)00036-7
[30] P. K. Gupta, S. Sharma, S. S. Walunj, A. A. Patil, A. Rai A and M. Saini, “A DNA Vaccine That Encodes Rabies Virus Glycoprotein Lacking Transmembrane Domain Enhances Antibody Response but Not Protection,” Acta Virologica, Vol. 50, No. 2, 2006, pp. 87-92.
[31] A. Rath, S. Choudhury, D. Batra, S. V. Kapre, C. E. Rupprecht and S. K. Gupta, “DNA Vaccine for Rabies: Relevance of the Trans-Membrane Domain of the Glycoprotein in Generating an Antibody Response,” Virus Research, Vol. 13, No. 2, 2005, pp. 143-152. doi:10.1016/j.virusres.2005.05.002
[32] M. O. Osinubi, X. Wu, R. Franka, M. Niezgoda, A. J. Nok, A. B. Ogunkoya and C. E. Rupprecht, “Enhancing Comparative Rabies DNA Vaccine Effectiveness through Glycoprotein Gene Modifications,” Vaccine, Vol. 27, No. 51, 2009, pp. 7214-7218. doi:10.1016/j.vaccine.2009.09.031
[33] M. Kaur, A. Rai and R. Bhatnagar, “Rabies DNA Vaccine: No Impact of MHC Class I and Class II Targeting Sequences on Immune Response and Protection against Lethal Challenge,” Vaccine, Vol. 27, No. 15, 2009, pp. 2128-2137. doi:10.1016/j.vaccine.2009.01.128

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.