Role of Transparent Exopolymer Particles on Phytoplankton Dynamics in a Subtropical Estuary, Cananéia-Iguape (Sp, Brazil)


Transparent Exopolymer Particles (TEP) has a known crucial role in vertical fluxes of carbon in the ocean and has been intensively studied in the last decade. Nevertheless, few studies have considered horizontal fluxes of TEP. These fluxes arise prominently between estuaries and the coast, where its importance is associated to the predominant horizontal transport. This is due both to the low density of the TEP agglomerate generated in low density waters of continental origin, and to the fact that the main component of the advective transport at estuarine regions is the horizontal one. In this study, the significance of TEP in the particulate matter exchange between estuary and coast was analyzed in the estuarine lagoon system of Cananéia-Iguape (southeast coast of Brazil). TEP, total seston (TS), organic seston (OS) and chlorophyll a (Chl.a) were analyzed over complete tidal cycles, during the dry and rainy seasons both at spring and neap tides. Horizontal fluxes and net transport rates of these variables were also calculated. TEP concentrations (max. 4991 μg Xeq/L) were almost one order of magnitude higher during the rainy season. TEP horizontal transport rates as high as 1.8 g Xeq. m/s were observed at the northern inlet of the system. In terms of particulate carbon, it represents 32.7 g TEP-C m/s or 4% of the OS transport rates. Our study quantifies the advective transport of TEP and their importance in particulate matter exchange between a subtropical estuarine system and the adjacent coastal region. Our results contribute to the knowledge of exopolimer particles dynamics in subtropical estuarine systems, and their relationship to phyto-plankton biomass and particulate matter.

Share and Cite:

J. Barrera-Alba, G. Moser, S. Gianesella and M. Saldanha-Corrêa, "Role of Transparent Exopolymer Particles on Phytoplankton Dynamics in a Subtropical Estuary, Cananéia-Iguape (Sp, Brazil)," Open Journal of Marine Science, Vol. 2 No. 1, 2012, pp. 25-32. doi: 10.4236/ojms.2012.21004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] U. Passow, “Transparent Exopolymer Particles (TEP) in Aquatic Environments,” Progress in Oceanography, Vol. 55, No. 3-4, 2002, pp. 287-333. doi:10.1016/S0079-6611(02)00138-6
[2] U. Passow, W. Kozlowski and M. Vernet, “Distribution of Transparent Exopolymer Particles (TEP) during Summer at a Permanent Station in Antarctica,” Antarctic Journal of the United States, Vol. 30, 1995, pp. 265-266.
[3] K. Azetsu-Scott and U. Passow, “Ascending Marine Particles: Significance of Transparent Exopolymer Particles (TEP) in the Upper Ocean,” Limnology and Oceanography, Vol. 49, No. 3, 2004, pp. 741-748. doi:10.4319/lo.2004.49.3.0741
[4] U. Passow, R. F. Shipe, A. Murray, D. K. Pak, M. A. Brzezinski and A. L. Alldredge, “Origin of Transparent Exopolymer Particles (TEP) and Their Role in the Sedimentation of Particulate Matter,” Continental Shelf Research, Vol. 21, No. 4, 2001, pp. 327-346. doi:10.1016/S0278-4343(00)00101-1
[5] T. Tanaka, T. F. Thingstad, et al., “Availability of Phosphate for Phytoplankton and Bacteria and of Glucose for Bacteria at Different pCO2 Levels in a Mesocosm Study,” Biogeosciences, Vol. 5, 2008, pp. 669-678. doi:10.5194/bg-5-669-2008
[6] M. Allgaier, U. Riebesell, et al., “Coupling of Heterotrophic Bacteria to Phytoplankton Bloom Development at Different pCO2 Levels: A Mesocosm Study,” Biogeosciences, Vol. 5, 2008, pp. 1007-1022. doi:10.5194/bg-5-1007-2008
[7] S. Beauvais, M. L. Pedrotti, E. Villa and R. Lemée, “Transparent Exopolymer Particle (TEP) Dynamics in Relation to Trophic and Hydrological Conditions in the NW Mediterranean Sea,” Marine Ecology Progress Series, Vol. 262, 2003, pp. 97-109. doi:10.3354/meps262097
[8] I. De Vicenti, E. Ortega-Retuerta, O. Romera, R. Mo- rales-Baquero and I. Reche, “Contribution of Transparent Exopolymer Particles to Carbon Sinking Flux in an Oligotrophic Reservoir,” Biogeochemistry, Vol. 96, No. 1-3, 2009, pp. 13-23.
[9] G. A. Jackson, A. M. Waite and P. W. Boyd, “Role of Algal Aggregation in Vertical Carbon Export during SOIREE and in Other Low Biomass Environments,” Geophysical Research Letters, Vol. 32, 2005, L13607.
[10] A. Engel, “The Role of Transparent Exopolymer Particles (TEP) in the Increase in Apparent Particle Stickiness (Alpha) during the Decline of a Diatom Bloom,” Journal of Plankton Research, Vol. 22, No. 3, 2000, pp. 485-497.
[11] T. Radic, I. Ivancic, D. Fuks and J. Radic, “Marine Bacterioplankton Production of Polysaccharidic and Proteinaceous Particles under Different Nutrient Regimes,” FEMS Microbiological Ecology, Vol. 58, No. 3, 2006, pp. 333-342.
[12] E. Bar-Zeev, I. Berman-Frank, et al., “Transparent Ex- opolymer Particles (TEP) Link Phytoplankton and Bacterial Production in the Gulf of Aqaba,” Aquatic Microbial Ecology, Vol. 56, No. 2-3, 2009, pp. 217-225. doi:10.3354/ame01322
[13] DAEE (Department of Water and Electric Energy), “Contribui??es Superficiais dos rios que Deságuam No Sistema Estuarino de Iguape-Cananéia (Mar Pequeno, Mar de Cubat?o e Baía do Trapandé),” Diretoria da Bacia do Ribeira e Litoral Sul/DAEE, OF/B.R.B./053/87, 1987.
[14] A. L. Bérgamo, “Características da Hidrografia, Circula??o e Transporte de sal: Barra de Cananéia, Sul do Mar de Cananéia e Baía de Trapandé. S?o Paulo: Instituto Ocean- ográfico—Universidade de S?o Paulo,” Disserta??o de mestrado em Oceanografia Física, 2000.
[15] APHA (American Public Health Association, Inc.), “Standard Methods for the Examination of Water and Wastewater,” 16th Edition, US Government Printing Office, Washington DC, 1985.
[16] D. C. Gordon Jr., “Examination of Methods of Particulate Organic Carbon Analysis,” Deep-Sea Research, Vol. 16, 1969, pp. 661-665.
[17] S. W. Jeffrey and G. F. Humphrey, “New Espectrofotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algal and Natural Phytoplankton,” Bhiochemie und Physiologie der Pflanzen, Vol. 167, 1975, pp. 191-194.
[18] A. Aminot and M. Chaussepied, “Manuel des Analyses Chimiques en Milieu Marin,” CNEXO, Brest, 1983.
[19] K. Grasshoff, M. Ehrhardt and K. Kremling, “Methods of Seawater Analysis,” 2nd Edition, Verlag Chemie, Wienhien, 1983.
[20] U. Passow and A. L. Alldredge, “A Dye-Binding Assay for the Spectrophotometric Measurement of Transparent Exopolymer Particles (TEP),” Limnology and Ocea- nography, Vol. 40, No. 7, 1995, pp. 1326-1335. doi:10.4319/lo.1995.40.7.1326
[21] A. Engel and U. Passow, “Carbon and Nitrogen Content of Transparent Exopolymer Particles (TEP) in Relation to Their Alcian Blue Adsorption,” Marine Ecology Progress Series, Vol. 219, 2001, pp. 1-10. doi:10.3354/meps219001
[22] U. Passow, “Production of TEP by Phytoplankton and Bacteria,” Journal of Phycology, Vol. 236, 2002, pp. 1- 12.
[23] S. Beauvais, M. L. Pedrotti, et al., “Effects of Turbulence on TEP Dynamics under Contrasting Nutrient Conditions: Implications for Aggregation and Sedimentation Processes,” Marine Ecology Progress Series, Vol. 323, 2006, pp. 47-57. doi:10.3354/meps323047
[24] A. L. Alldredge and C. C. Gotschalk, “In Situ Settling Behavior of Marine Snow,” Limnology and Oceanography, Vol. 33, No. 3, 1988, pp. 339-351. doi:10.4319/lo.1988.33.3.0339
[25] C. L. De La Rocha and U. Passow, “Factors Influencing the Sinking of POC and the Efficiency of the Biological Carbon Pump,” Deep Sea Research Part II, Vol. 54, No. 5-7, 2007, pp. 639-658.
[26] A. L. Alldredge and K. M. Crocker, “Why Do Sinking Mucilage Aggregates Accumulate in the Water Column?” The Science of Total Environment, Vol. 165, No. 1-3, 1995, pp. 15-22. doi:10.1016/0048-9697(95)04539-D
[27] X. Mari, “Does Ocean Acidification Induce an Upward Flux of Marine Aggregates?” Biogeosciences, Vol. 5, 2008, pp. 1023-1031. doi:10.5194/bg-5-1023-2008
[28] U. Riebesell and D. A. Wolf-Gladrow, “The Relationship between Physical Aggregation of Phytoplankton and Particle Flux: A Numerical Model,” Deep-Sea Research I, Vol. 39, No. 7-8, 1992, pp. 1085-1102. doi:10.1016/0198-0149(92)90058-2
[29] V. L. Asper, “Measuring the Flux and Sinking Speed of Marine Snow Aggregates,” Deep-Sea Research I, Vol. 34, No. 1, 1987, pp. 1-17. doi:10.1016/0198-0149(87)90117-8
[30] K. Azetsu-Scott and B. D. Johnson, “Time Series of the Vertical Distribution of Particles during a Spring Phytoplankton Bloom in a Coastal Basin,” Continental Shelf Research, Vol. 14, No. 6, 1994, pp. 687-705. doi:10.1016/0278-4343(94)90113-9
[31] K. M. Crocker and U. Passow, “Differential Aggregation of Diatoms,” Marine Ecology Progress Series, Vol. 117, No. 1-3, 1995, pp. 249-257. doi:10.3354/meps117249
[32] B. E. Logan, U. Passow, A. L. Alldredge, H.-P. Grossart and M. Simon, “Rapid Formation and Sedimentation of Large Aggregates Is Predictable from Coagulation Rates (Half-Lives) of Transparent Exopolymer Particles (TEP),” Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 42, No. 1, 1995, pp. 203-214. doi:10.1016/0967-0645(95)00012-F
[33] H. P. Grossart and M. Simon, “Formation of Macroscopic Organic Aggregates (Lake Snow) in a Large Lake: The Significance of Transparent Exopolymer Particles, Phyto- plankton, and Zooplankton,” Limnology and Oceanography, Vol. 42, No. 8, 1997, pp. 1651-1659. doi:10.4319/lo.1997.42.8.1651

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.