Expression of casein kinase genes in glioma cell line U87: Effect of hypoxia and glucose or glutamine deprivation


The endoplasmic reticulum-nuclei-1 (ERN1) sensing and signaling enzyme mediates a set of complex intracellular signaling events known as the unfolded protein response. We have studied the effect of hypoxia and ischemic conditions (glucose or glutamine deprivation) on the expression of several casein kinase-1 and -2 genes in glioma U87 cells and its subline with suppressed function of ERN1. It was shown that blockade of ERN1, the key endoplasmic reticulum stress sensor, leads to an increase in the expression levels of casein kinase-1G2, -1E, -2B and NUCKS1 mRNA, but suppresses casein kinase-1A1, -1D and -2A1. Moreover, the expression levels of casein kinase-1A1, -1D and 1G3 as well as casein kinase-2A1 and -2A2 mRNAs are significantly increased under glutamine dep- rivation conditions both in control and ERN1- deficient glioma cells. At the same time, casein kinase-1E, -2B and NUCKS1 mRNA expression levels are also increased under this condition, but only in cells with suppressed function of ERN1. The expression level of NUCKS1 mRNA, however, is decreased both in control glioma cells and in genetically modified cells, but casein kinase-1G2—only in control U87 cells. Cell exposure to glucose deprivation conditions enhances the expression levels of casein kinase- 1D, 1G3, -1E and -2A1 in both types of glioma cells used, but casein kinase-2B expression levels increase only in cells with suppressed function of ERN1. Hypoxia induces or suppresses the expression of most of the studied genes mainly in ERN1-knockdown cells only. Results of this study show that hypoxia as well as glutamine and glucose deprivation conditions change the expression level most of casein kinase genes and that these effects are dependent on ERN1 signaling enzyme function.

Share and Cite:

Minchenko, D. , Karbovskyi, L. , Danilovskyi, S. , Kharkova, A. and Minchenko, O. (2012) Expression of casein kinase genes in glioma cell line U87: Effect of hypoxia and glucose or glutamine deprivation. Natural Science, 4, 38-46. doi: 10.4236/ns.2012.41007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Aragón, T., Van Anken, E., Pincus, D., Serafimova, I.M., Korennykh, A.V., Rubio, C.A. and Walter P. (2009) Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 457, 736-740. doi:10.1038/nature07641
[2] Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., Scheuner, D., Kaufman, R.J., Bell, J., Ron, D., Wouters, B.G. and Koumenis, C. (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 24, 3470-3481. doi:10.1038/sj.emboj.7600777
[3] Blais, J.D., Filipenko, V., Bi, M., Ron, D., Koumenis, C., Wouters, B.G. and Bell, J.C. (2004) Transcription factor 4 is translationally regulated by hypoxic stress. Molecular Cell Biology, 24, 7469-7482. doi:10.1128/MCB.24.17.7469-7482.2004
[4] Fels, D.R. and Koumenis, C. (2006) The PERK/eIF2a/ ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology & Therapy, 5, 723-728. doi:10.4161/cbt.5.7.2967
[5] Luo, D., He, Y., Zhang, H., Yu, L., Chen, H., Xu, Z., Tang, S., Urano, F. and Min, W. (2008) AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response. The Journal of Biological Chemistry, 283, 11905-11912. doi:10.1074/jbc.M710557200
[6] Korennykh, A.V., Egea, P.F., Korostelev, A.A., Finer-Moore, J., Zhang, C., Shokat, K.M., Stroud, R.M. and Walter, P. (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature, 457, 687-693. doi:10.1038/nature07661
[7] Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A.H., Yoshida, H., Mori, K., Glimcher, L.H., Denko, N.C., Giaccia, A.J., Le, Q.-T. and Koong, A.C. (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research, 64, 5943-5947. doi:10.1158/0008-5472.CAN-04-1606
[8] Lin, J.H., Li, H., Yasumura, D. Cohen, H.R., Zhang, C., Panning, B., Shokat, K.M., Lavail, M.M. and Walter, P. (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science, 318, 944-949. doi:10.1126/science.1146361
[9] Hollien, J., Lin, J.H., Li, H., Stevens, N., Walter, P. and Weissman, J.S. (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. The Journal of Cell Biology, 186, 323-331. doi:10.1083/jcb.200903014
[10] Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., Kluger, Y. and Dynlacht D.D. (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell, 27, 53-66. doi:10.1016/j.molcel.2007.06.011
[11] Han, D., Upton, J.-P., Hagen, A., Callahan, J., Oakes, S.A. and Papa, F.R. (2008) A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress. Biochemical and Biophysical Research Communications, 365, 777-783. doi:10.1016/j.bbrc.2007.11.040
[12] Greenman, C., Stephans, P., Smith, R. Dalgliesh, G.L., Hunter, C., Bignell, G., Davies, H., et al. (2007) Patterns of somatic mutation in human genomes. Nature, 446, 153-158. doi:10.1038/nature05610
[13] Auf, G., Jabouille, A., Guérit, S., Pineau, R., Delugin, M., Bouchecareilh, M., Favereaux, A., Maitre, M., Gaiser, T., Von Deimling, A., Czabanka, M., Vajkoczy, P., Chevet, E., Bikfalvi, A. and Moenner, M. (2010) A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proceedings of the National Academy of Sciences of the United States of America, 107, 15553- 15558. doi:10.1073/pnas.0914072107
[14] Drogat, B., Auguste, P., Nguyen, D.T., Bouchecareilh, M., Pineau, R., Nalbantoglu, J., Kaufman, R.J., Chevet, E., Bikfalvi, A. and Moenner, M. (2007) IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor—A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 67, 6700-6707. doi:10.1158/0008-5472.CAN-06-3235
[15] Moenner, M., Pluquet, O., Bouchecareilh, M. and Chevet, E. (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Research, 67, 10631-10634. doi:10.1158/0008-5472.CAN-07-1705
[16] Denko, N.C. (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 8, 705-713. doi:10.1038/nrc2468
[17] Saito, A., Ochiai, K., Kondo, S., Tsumagari, K., Murakami, T., Cavener, D.R. and Imaizumi, K. (2011) Endoplasmic reticulum stress response mediated by the PERK- eIF2-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. The Journal of Biological Chemistry, 286, 4809-4818. doi:10.1074/jbc.M110.152900
[18] Hetz, C. and Glimcher, L.H. (2009) Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Molecular Cell, 35, 551-561. doi:10.1016/j.molcel.2009.08.021
[19] Hunt, T. and Sassone-Corsi, P. (2007) Riding tandem: Circadian clocks and the cell cycle. Cell, 129, 461-464. doi:10.1016/j.cell.2007.04.015
[20] Hua, H., Wang, Y., Wan, C., Liu, Y., Zhu, B., Yang, C., Wang, X., Wang, Z., Cornelissen-Guillaume, G. and Hal- berg, F. (2006) Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Science, 97, 589-596. doi:10.1111/j.1349-7006.2006.00225.x
[21] Cao, Q., Gery, S., Dashti, A., Yin, D., Zhou, Y., Gu, J. and Koeffler, H.P. (2009) A role for the clock gene per1 in prostate cancer. Cancer Research, 69, 7619-7625. doi:10.1158/0008-5472.CAN-08-4199
[22] Chen, S.T., Choo, K.B., Hou, M.F., Yeh, K.T., Kuo, S.J. and Chang, J.G. (2005) Rhythmic PER abundance definesa critical nodal point for negative feedback within the circadian clock mechanism. Carcinogenesis, 26, 1241- 1246. doi:10.1093/carcin/bgi075
[23] Taniguchi, H., Fernandez, A.F. and Setien, F. (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Research, 69, 8447-8454. doi:10.1158/0008-5472.CAN-09-0551
[24] Climent, J., Perez-Losada, J., Quigley, D.A., Kim, I.J., Delrosario, R., Jen, K.Y., Bosch, A., Lluch, A., Mao, J.H. and Balmain, A. (2010) Deletion of the PER3 gene on chromosome 1p36 in recurrent ER-positive breast cancer. Journal of Clinical Oncology, 28, 3770-3778. doi:10.1200/JCO.2009.27.0215
[25] Huang, W., Ramsey, K.M. and Marcheva, B. (2011) Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation, 121, 2133-2141. doi:10.1172/JCI46043
[26] Borgs, L., Beukelaers, P., Vandenbosch, R., Belachew, S., Nguyen, L. and Malgrange, B. (2009) Cell “circadian” cycle: New role for mammalian core clock genes. Cell Cycle, 8, 832-837. doi:10.4161/cc.8.6.7869
[27] Mizoguchi, T., Putterill, J. and Ohkoshi, Y. (2006) Kinase and phosphatase: The cog and spring of the circadian clock. International Review of Cytology, 250, 47-72. doi:10.1016/S0074-7696(06)50002-6
[28] Walton, K.M., Fisher, K., Rubitski, D., Marconi, M., Meng, Q.J., Sládek, M., Adams, J., Bass, M., Chandrase- karan, R., Butler, T., Griffor, M., Rajamohan, F., Serpa, M., Chen, Y., Claffey, M., Hastings, M., Loudon, A., Maywood, E., Ohren, J., Doran, A. and Wager, T.T. (2009) Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. Journal of Pharmacology and Experimental Therapeutics, 330, 430-439. doi:10.1124/jpet.109.151415
[29] Meng, Q.J., Maywood, E.S., Bechtold, D.A., Lu, W.Q., Li, J., Gibbs, J.E., Dupré, S.M., Chesham, J.E., Rajamohan, F., Knafels, J., Sneed, B., Zawadzke, L.E., Ohren, J.F., Walton, K.M., Wager, T.T., Hastings, M.H. and Loudon, A.S. (2010) Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107, 15240-15245. doi:10.1073/pnas.1005101107
[30] Sprouse, J., Reynolds, L., Swanson, T.A. and Engwall, M. (2009) Inhibition of casein kinase I epsilon/delta produces phase shifts in the circadian rhythms of Cynomolgus monkeys. Psychopharmacology (Berl), 204, 735-742. doi:10.1007/s00213-009-1503-x
[31] Takano, A., Hoe, H.S., Isojima, Y. and Nagai, K. (2004) Analysis of the expression, localization and activity of rat casein kinase 1epsilon-3. Neuro Report, 15, 1461-1464. doi:10.1097/01.wnr.0000133297.77278.81
[32] Rumpf, C., Cipak, L., Dudas, A., Benko, Z., Pozgajova, M., Riedel, C.G., Ammerer, G., Mechtler, K. and Gregan, J. (2010) Casein kinase 1 is required for efficient removal of Rec8 during meiosis I. Cell Cycle, 9, 2657-2662. doi:10.4161/cc.9.13.12146
[33] Foldynová-Trantírková, S., Sekyrová, P., Tmejová, K., Brumovská, E., Bernatík, O., Blankenfeldt, W., Krejcí, P., Kozubík, A., Dolezal, T., Trantírek, L. and Bryja, V. (2010) Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Research, 12, R30. doi:10.1186/bcr2581
[34] Witte, F., Bernatik, O., Kirchner, K., Masek, J., Mahl, A., Krejci, P., Mundlos, S., Schambony, A., Bryja, V. and Stricker, S. (2010) Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled via Ror2. The FASEB Journal, 24, 2417-2426. doi:10.1096/fj.09-150615
[35] Venerando, A., Marin, O., Cozza, G., Bustos, V.H., Sarno, S. and Pinna, LA. (2010) Isoform specific phosphorylation of p53 by protein kinase CK1. Cellular and Molecular Life Sciences, 67, 1105-1118. doi:10.1007/s00018-009-0236-7
[36] Guo, X., Waddell, D.S., Wang, W., Wang, Z., Liberati, N.T., Yong, S., Liu, X. and Wang, X.F. (2008) Ligand- dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-beta signaling. Oncogene, 27, 7235-7247. doi:10.1038/onc.2008.337
[37] Hessenauer, A., Schneider, C.C., Gotz, C. and Montenarh, M. (2011) CK2 inhibition induces apoptosis via the ER stress response. Cellular Signalling, 23, 145-151. doi:10.1016/j.cellsig.2010.08.014
[38] Minchenko, D.M., Hubenya, O.V., Terletsky, B.M., Moenner, M. and Minchenko, O.H. (2011) Effect of hypoxia, glutamine and glucose deprivation on the expression of cyclin and cyclin-dependent kinase genes in glioma cell line U87 and its subline with suppressed activity of signaling enzyme endoplasmic reticulum-nu- clei-1. Ukrainian Biochemical Journal, 83, 5-16.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.