Synthesis and Characterization of CaPd3O4 Crystals


A new method for the crystal growth of alkaline-earth palladate CaPd3O4 was developed. The crystals were synthesized on a voltage-applied electrode in a molten chloride solvent. The maximum length of the crystal was about 1.5 mm. The X-ray diffraction data were refined well by assuming a cubic structure of the space group Pm n, and the lattice constant a was 5.7471 (10) ?. The temperature dependence of the resistivity showed semiconductor-like characteristics with a very small activation energy Ea of 0.45 meV at low temperatures, and the resistivity at 300 K was 0.1 cm. The temperature dependence of the molar magnetic susceptibility showed the Curie-Weiss paramagnetic behavior with a small molar Curie constant Cmol of 5.0(1) × 10-3 emu K/(mol Oe), indicating the existence of localized spin moments.

Share and Cite:

H. Samata, S. Tanaka, S. Mizusaki, Y. Nagata, T. Ozawa, A. Sato and K. Kosuda, "Synthesis and Characterization of CaPd3O4 Crystals," Journal of Crystallization Process and Technology, Vol. 2 No. 1, 2012, pp. 16-20. doi: 10.4236/jcpt.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. C. Wnuk, T. R. Touw and B. Post, “The Crystal Struc- ture of CaPd3O4,” IBM Journal of Research and Development, Vol. 8, No. 2, 1964, pp. 185-186. doi:10.1147/rd.82.0185
[2] K. Itoh and N. Tsuda, “Metal to Semiconductor Like Transition for Sintered Ca1-?xNaxPd3O4,” Solid State Com- munications, Vol. 109, No. 11, 1999, pp. 715-719. doi:10.1016/S0038-1098(98)00549-3
[3] I. Hase and Y. Ni-shihara, “CaPd3O4, as an Excitonic Insulator,” Physical Review B, Vol. 62, No. 20, 2000, pp. 13426-13429. doi:10.1103/PhysRevB.62.13426
[4] S. Ichikawa and I. Te-rasaki, “Metal-Insulator Transition in Ca1?-xLixPd3O4,” Physical Review B, Vol. 68, 2003, p. 233101. doi:10.1103/PhysRevB.68.233101
[5] K. Itoh, Y. Yano and N. Tsuda, “Metal to Insulator Transition for Ca1-?xNaxPd3O4,” Journal of the Physical Society of Japan, Vol. 68, No. 9, 1999, pp. 3022-3026. doi:10.1143/JPSJ.68.3022
[6] Y. Yano, M. Kanazawa, T. Fujii and N. Tsuda, “Magnetic Susceptibility of Ca1-?xNaxPd3O4,” Journal of the Physical Society of Japan, Vol. 70, No. 6, 2001, pp. 1772-1176. doi:10.1143/JPSJ.70.1772
[7] T. Taniguchi, Y. Nagata, T. C. Ozawa, M. Sato, Y. Noro, T. Uchida and H. Samata, “Insula-tor-Metal Transition In- duced in Sr1-?xNaxPd3O4 for Small Na-Substitutions,” Jour- nal of Alloys and Compounds, Vol. 373, No. 1-2, 2004, pp. 67-72. doi:10.1016/j.jallcom.2003.11.004
[8] T. C. Ozawa, A. Mat-sushita, Y. Hidaka, T. Taniguchi, S. Mizusaki, Y. Nagata, Y. Noro and H. Samata, “Synthesis and Characterization of Electron and Hole Doped Ternary Palladium Oxide: Sr1-xAxPd3O4 (A = Na, Bi),” Journal of Alloys and Compounds, Vol. 448, No. 1-2, 2008, pp. 77- 83. doi:10.1016/j.jallcom.2007.03.137
[9] J. Kitagawa, T. Sasakawa, T. Suemitsu, Y. Echizen and T. Ta-kabatake, “Effects of Valence Fluctuation and Pseudogap Formation on Phonon Thermal Conductivity of Ce-Based Compounds with ε-TiNiSi-Type Structure,” Phy- sical Review B, Vol. 66, No. 22, 2002, p. 224304. doi:10.1103/PhysRevB.66.224304
[10] A. Saramat, G. Svens-son, A. E. C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S. G. K. Williams and D. M. Rowe, “Large Thermoelectric Figure of Merit at High Tem- perature in Czochralski-Grown Clathrate Ba8Ga16Ge30,” Journal of Applied Physics, Vol. 99, No. 2, 2006, p. 023708. doi:10.1063/1.2163979
[11] P. L. Smallwood, M. D. Smith and H.-C. zur Loye, “Flux Synthesis of Alkaline Earth Palladates,” Journal of Crystal Growth, Vol. 216, No. 1-4, 2000, pp. 299-303. doi:10.1016/S0022-0248(00)00432-2
[12] T. N. Nguyen and Hans-Conrad zur Loye, “Electrosynthesis in Hydroxide Melts,” Journal of Crystal Growth, Vo. 172, No. 1-2, 1997, pp. 183-189. doi:10.1016/S0022-0248(96)00726-9
[13] H. Samata, Y. Saeki, S. Mizusaki, Y. Nagata, T. C. Oza- wa and A. Sato, “Electro-chemical Crystal Growth of Pe- rovskite Ruthenates,” Journal of Crystal Growth, Vol. 311, No. 3, 2009, pp. 623-626. doi:10.1016/j.jcrysgro.2008.09.042
[14] G. M. Sheldrick, SHELXTL, Version 6.10, Bruker AXS Inc., Madison, 1997.
[15] F. Izumi and T. Ikeda, “A Rietveld-Analysis Pro-gramm RIETAN-98 and its Applications to Zeolites,” Materials Science Forum, Vol. 321-324, 2000, pp. 198-205. doi:10.4028/
[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, “Nu-merical Recipes,” Cambridge University Press, Cambridge, 1986.
[17] S. J. Kim, S. Lemaux, G. Demazeau, J. Y. Kim and J. H. Choy, “LaPdO3: The First PdIII Oxide with the Perovskite Structure,” Journal of the American Chemical Society, Vol. 123, No. 42, 2001, pp. 10413-10414. doi:10.1021/ja016522b

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.