Reducible Poly (2-Dimethylaminoethyl) Methacrylate-Block-Polyvinylimidazole: Synthesis, Transfection Activity in Vitro


Reducible or imidazolyl polycations of block poly(imidazole/2-dimethyl aminoethyl) are of promising in gene delivery. Dimeric poly(2-dimethyl aminoethyl) methacrylate-block-polyvinylimidazole (rDPDMAEMAIM) and reducible poly (2-dimethylaminoethyl) methacrylate (rDPDMAEMA) with single disulfide bond in the backbone was synthesized by oxidizing their dithioester-terminated polymers. The polyplexes sizes, rDPDMAEMAIM/pDNA and rDPDMAEMA/ pDNA (plasmid DNA) are in the ranges of 100 nm - 150 nm at the weight ratio of 12:1, and the zeta potential of rDPDMAEMAIM/pDNA from 9.6 mV to 22.7 mV in PBS solutions increases with their weight ratios of 1:1 to 18:1. The results show that the rDPDMAEMAIM/pDNA polyplexes have higher transfection activity and lower cytotoxicity than that of rDPDMAEMAIM/pDNA against 293T cells in vitro in the presence of serum, indicating that the PDMAEMAIM present a promising nonviral gene vector.

Share and Cite:

B. Yu, "Reducible Poly (2-Dimethylaminoethyl) Methacrylate-Block-Polyvinylimidazole: Synthesis, Transfection Activity in Vitro," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 118-124. doi: 10.4236/jbnb.2012.31016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. S. Manickam and D. Oupicky, “Polyplex Gene Delivery Modulated by Redox Potential Gradients,” Journal of Drug Targeting, Vol. 14, No. 8, 2006, pp. 519-526. doi:10.1080/10611860600834409
[2] K. Miyata, Y. Kakizawa, N. Nishiyama, A. Harada, Y. Yamasaki, H. Koyama and K. Kataoka, “Block Catiomer Polyplexes with Regulated Densities of Charge and Disulfide Cross-Linking Directed to Enhance Gene Expression,” Journal of the American Chemical Society, Vol. 126, No. 8, 2004, pp. 2355-2361. doi:10.1021/ja0379666
[3] D. L. McKenzie, K.Y. Kwok and K. G. Rice, “A Potent New Class of Reductively Activated Peptide Gene Delivery Agents,” Journal of Biological Chemistry, Vol. 275, No. 14, 2000, 9970-9977. doi:10.1074/jbc.275.14.9970
[4] M. L. Read, K. H. Bremner, D. Oupicky, N. K. Green, P. F. Searle and L. W. Seymour, “Vectors Based on Reducible Polycations Facilitate Intracellular RElease of Nucleic Acids,” The Journal of Gene Medicine, Vol. 5, No. 3, 2003, pp. 232-245. doi:10.1002/jgm.331
[5] M. Oishi, T. Hayama, Y. Akiyama, S. Takae, A. Harada, Y. Yamasaki, F. Nagatsugi, S. Sasaki, Y. Nagasaki and K. Kataoka, “Supramolecular Assemblies for the Cytoplasmic Delivery of Antisense Oligodeoxynucleotide: Polyion Complex (PIC) Micelles Based on Poly(Ethylene Glycol)- SS-Oligodeoxynucleotide Conjugate,” Biomacromolecules, Vol. 6, No. 5, 2005, pp. 2449-2454. doi:10.1021/bm050370l
[6] D. S. Manickam and D. Oupicky, “Multiblock Reducible Copolypeptides Containing Histidine-Rich and Nuclear Localization Sequences for Gene Delivery,” Bioconjugate Chemistry, Vol. 17, No. 6, 2006, 1395-1403. doi:10.1021/bc060104k
[7] Y. Z. You, D. S. Manickam, Q. H. Zhou and D. Oupicky, “Reducible Poly(2-Dimethylaminoethyl methacrylate): Synthesis, Cytotoxicity, and Gene Delivery Activity,” Journal of Controlled Release, Vol. 122, No. 3, 2007, pp. 217-225. doi:10.1016/j.jconrel.2007.04.020
[8] Y. Lee, H. Mo, H. Koo, J. Y. Park, M. Y. Cho, G. W. Jin and J. S. Park, “Visualization of the Degradation of a Disulfide Polymer, Linear Poly(Ethylenimine Sulfide), for Gene Delivery,” Bioconjugate Chemistry, Vol. 18, No. 1, 2007, pp. 13-18. doi:10.1021/bc060113t
[9] J. Kloeckner, E. Wagner and M. Ogris, “Degradable Gene Carriers Based on Oligomerized Polyamines,” European Journal of Pharmaceutical Sciences, Vol. 29, No. 5, 2006, pp. 414-425. doi:10.1016/j.ejps.2006.08.002
[10] C. Lin, Z. Zhong, M. C. Lok, X. Jiang, W. E. Hennink, J. Feijen and J. F. J. Engbersen, “Novel Bioreducible Poly (Amido Amine)s for Highly Efficient GEne Delivery,” Bioconjugate Chemistry, Vol. 18, No. 1, 2007, pp. 138- 145. doi:10.1021/bc060200l
[11] L. V. Christensen, C. W. Chang, W. J. Kim, S. W. Kim, Z. Zhong, C. Lin, J. F. J. Engbersen and J. Feijen, “Reducible Poly(Amido Ethylenimine)s Designed for Triggered Intracellular Gene Delivery,” Bioconjugate Chemistry, Vol. 17, No. 5, 2006, pp. 1233-1240. doi:10.1021/bc0602026
[12] A. M. Funhoff, C. F. van Nostrum, M. C. Lok, J. A. Kruijtzer, D. J. Crommelin and W. E. Hennink, “Cationic Polymethacrylates with Covalently Linked Membrane Destabilizing Peptides as Gene Delivery Vectors,” Journal of Controlled Release, Vol. 101, No. 1-3, 2005, pp. 233-246. doi:10.1016/j.jconrel.2004.06.023
[13] R. A. Jones, M. H. Poniris and M. R. Wilson, “pDMAEMA Is Ransferring by Endocytosis but Does Not Physically Disrupt Endosomes,” Journal of Controlled Release, Vol. 96, No. 3, 2004, pp. 379-391. doi:10.1016/j.jconrel.2004.02.011
[14] M. Zenke, P. Steinlein, E. Wagner, M. Cotton, H. Beug and M. L. Birnstiel, “Receptor-Mediated Endocytosis of Ransferring-Polycation Conjugates: An Efficient Way to Introduce DNA into Hematopoietic Cells,” Proceedings of the National Academy of Sciences, Vol. 87, No. 10, 1990, pp. 3655-3659. doi:10.1073/pnas.87.10.3655
[15] P. Midoux, C. Mendes, A. Legrand, J. Raimond, R. Mayer, M. Monsigny and A. C. Roche, “Specific Gene Transfer Mediated by LActosylated Poly-L-lysine into Hepatoma cells,” Nucleic Acids Research, Vol. 21, No. 4, 1993, pp. 871-878. doi:10.1093/nar/21.4.871
[16] O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D.Mergny, D. Scherman, B. Demeneix and J. P. Behr, “A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine,” Proceedings of the National Academy of Sciences, Vol. 92, No. 16, 1995, pp. 7297-7301. doi:10.1073/pnas.92.16.7297
[17] B. Demeneix and J. P. Behr, “Polyethylenimine (PEI),” Advances in Genetics, Vol. 53, 2005, pp. 215-230. doi:10.1016/S0065-2660(05)53008-6
[18] Y. Yang, Z. Xu, S. Chen, Y. Gao, W. Gu, L. Chen, Y. Pei and Y. Li, “Histidylated Cationic Polyorganophosphazene/ DNA Self-Assembled Nanoparticles for Gene Delivery,” International Journal of Pharmaceutics, Vol. 353, No. 1-2, 2008, pp. 277-282.
[19] Q. R. Chen, L. Zhang, S. A. Stass and A. J. Mixson, “Co-polymer of Histidine and Lysine Markedly Enhances Transfection Efficiency of Liposomes,” Gene Therapy, Vol. 7, No. 19, 2000, pp. 1698-1705. doi:10.1038/
[20] Q. R. Chen, L. Zhang, S. A. Stass and A. J. Mixson, “Branched Co-Polymers of Histidine and Lysine Are Efficient Carriers of Plasmids,” Nucleic Acids Research, Vol. 29, No. 6, 2001, pp. 1334-1340. doi:10.1093/nar/29.6.1334
[21] Q. R. Chen, L. Zhang, P. W. Luther and A. J. Mixson, “Optimal Transfection with the HK Polymer Depends on Its Degree of Branching and the pH of Endocytic Vesicles,” Nucleic Acids Research, Vol. 30, No. 6, 2002, pp. 1338-1345. doi:10.1093/nar/30.6.1338
[22] Q. Leng and A. J. Mixson, “Modified Branched Peptides with a Histidine-RIch Tail Enhance in Vitro Gene Transfection,” Nucleic Acids Research, Vol. 33, No. 4, 2005, p.e40. doi:10.1093/nar/gni040
[23] Q. Leng, P. Scaria, P. Lu, M. C. Woodle and A. J. Mixson, “Systemic Delivery of HK Raf-1 siRNA Polyplexes Inhibits MDA-MB-435 Xenografts Tumor Xenograft Reduction by HK: siRNA Polyplexes,” Cancer Gene Therapy, Vol. 15, 2008, pp. 485-495. doi:10.1038/cgt.2008.29
[24] Y. Yang, Z. Xu, J. Jiang, Y. Gao, W. Gu, L. Chen, X. Tang and Y. Li, “Poly (imidazole/DMAEA) Phosphazene/DNA Self-Assembled Nanoparticles for Gene Delivery: Synthesis and in Vitro Transfection,” Journal of Controlled Release, Vol. 127, No. 3, 2008, pp. 273-279. doi:10.1016/j.jconrel.2008.01.012
[25] D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber and M. E. Davis, “Impact of Tumor-Specific Targeting on the Biodistribution and Efficacy of siRNA Nanoparticles Measured by Multimodality in Vivo Imaging,” Proceedings of the National Academy of Sciences, Vol. 104, No. 39, 2007, pp. 15549-15554. doi:10.1073/pnas.0707461104
[26] J. D. Heidel, Z. Yu, J. Y. Liu, S. M. Rele, Y. Liang, R. K. Zeidan, D. J. Kornbrust and M. E. Davis, “Administration in Non-Human Primates of Escalating Intravenous Doses of Targeted Nanoparticles Containing Ribonucleotide Reductase Subunit M2 siRNA,” Proceedings of the National Academy of Sciences, Vol. 104, No. 14, 2007, pp. 5715- 5721. doi:10.1073/pnas.0701458104
[27] T. H. Kim, J. E. Ihm, Y. J. Choi, J. W. Nah and C. S. Cho, “Efficient Gene Delivery by Urocanic Acid-Modified Chitosan,” Journal of Controlled Release, Vol. 93, No. 3, 2003, pp. 389-402. doi:10.1016/j.jconrel.2003.08.017
[28] A. Swami, A. Aggarwal, A. Pathak, S. Patnaik, P. Kumar, Y. Singh and K. C. Gupta, “Imidazolyl-PEI Modified Nanoparticles for Enhanced Gene Delivery,” International Journal of Pharmaceutics, Vol. 335, No. 1-2, 2007, pp. 180-192.
[29] T. Hakamatani, S. Asayama and H. Kawakami, “Synthesis of Alkylated Poly(1-vinylimidazole) for a New pH-Sensitive DNA Carrier,” Nucleic Acids Symposium Series, Vol. 52, No. 1, 2008, pp. 677-678. doi:10.1093/nass/nrn342
[30] D. W. Bartlett and M. E. Davis, “Physicochemical and Biological Characterization of TArgeted, Nucleic Acid- Containing Nanoparticles,” Bioconjugate Chemistry, Vol. 18, No. 2, 2007, pp. 456-468. doi:10.1021/bc0603539
[31] H. Jin, C. X. Xu, H. W. Kim, Y. S. Chung, J. Y. Shin, S. H. Chang, S. J. Park, E. S. Lee, S. K. Hwang, J. T. Kwon, A. Minai-Tehrani, M. Woo, M. S. Noh, H. J. Youn, D. Y. Kim, B. I. Yoon, K. H. Lee, T. H. Kim, C. S. Cho and M. H. Cho, “Urocanic Acid-Modified Chitosan-Mediated PTEN Delivery via Aerosol Suppressed Lung Tumorigenesis in K-rasLA1 MiceAerosol Delivery of PTEN for Lung Cancer Treatment,” Cancer Gene Therapy, Vol. 15, 2008, pp. 275-283. doi:10.1038/sj.cgt.7701116
[32] H. T. Wu, C. S. Lin and M. C. Huang, “In Vitro and ex Vivo Green Fluorescent Protein Expression in Alveolar Mammary Epithelial Cells and Mammary Glands Driven by the Distal 5'-Regulative Sequence and Intron 1 of the Goat β-Casein Gene,” Reproduction, Fertility and Development, Vol. 15, No. 4, 2003, pp. 231-239. doi:10.1071/RD01050
[33] Y. Gao, W. W. Gu, L. L. Chen, Z. H. Xu and Y. P. Li, “A Multifunctional Nanodevice as Non-Viral VEctor for Gene Delivery: In Vitro Characteristics and Transfection,” Journal of Controlled Release, Vol. 118, No. 3, 2007, pp. 381-388. doi:10.1016/j.jconrel.2007.01.006
[34] J. Hoon Jeong, L. V. Christensen, J. W. Yockman, Z. Zhong, J. F. Engbersen, W. J. Kim, J. Feijen and S. WanKim, “Reducible Poly(Amido Ethylenimine) Directed to Enhance RNA Interference,” Biomaterials, Vol. 28, No. 10, 2007, pp. 1912-1917. doi:10.1016/j.biomaterials.2006.12.019
[35] S. Mishra, J. D. Heidel, P. Webster and M. E. Davis, “Imidazole Groups on a Linear, Cyclodextrin-Containing Polycation Produce Enhanced Gene Delivery via Multiple Processes,” Journal of Controlled Release, Vol. 116, No. 2, 2006, pp. 179-191. doi:10.1016/j.jconrel.2006.06.018
[36] J. S. Park, T. H. Han, K. Y. Lee, S. S. Han, J. J. Hwang, D. H. Moon, S. Y. Kim and Y. W. Cho, “N-Acetyl Histidine-Conjugated Glycol Chitosan SElf-Assembled Nanoparticles for Intracytoplasmic Delivery of drugs: Endocytosis, Exocytosis and Drug Release,” Journal of Controlled Release, Vol. 115, No. 1, 2006, pp. 37-45. doi:10.1016/j.jconrel.2006.07.011

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.