Estimate of the Crystallization Kinetics in Stoichiometry Compositions Films of Ge:Sb:Te


The aim of this work is to compare the isothermal crystallization kinetic in the films along GeTe-Sb2Te3 line with composition Ge2Sb2Te5, Ge1Sb2Te4 Ge1Sb4Te7 and Ge4Sb1Te5 using mainly Johnson–Mehl–Avrami-Kolmogorov (JMAK) model. Results obtained have shown different crystallization mechanism in the investigated films. In Ge2Sb2Te5 and Ge1Sb2Te4 films the analysis of the kinetic results (Avrani coefficient) showed that at the beginning of crystallization a metastable phase appeared with the Ge1Sb4Te7 composition, this is followed by the nucleation and growth of the stable fcc phase up to full crystallization. In contrast Ge4Sb1Te5 and Ge1Sb4Te7 films show diffusion control growing from small dimension grains with decreasing nucleation rate.

Share and Cite:

C. Rodríguez, E. Sanchez, J. Hernández, E. Prokhorov, J. Saldaña and G. Martínez, "Estimate of the Crystallization Kinetics in Stoichiometry Compositions Films of Ge:Sb:Te," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 1, 2012, pp. 44-46. doi: 10.4236/jsemat.2012.21008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. Weidenhof, I. Friedrich, S. Ziegler and M. Wuttig, “Laser Induced Crystallization of Amorphous Ge2SbTe5 Films,” Journal of Applied Physics, Vol. 89, No. 6, 2001, pp. 3168-3176. doi:10.1063/1.1351868
[2] T. H. Jeong, M. R. Kim and H. Seo, “Crystallization Behavior of Sputter-Deposited Amorphous Ge2Sb2Te5 Thin Films,” Journal of Applied Physics, Vol. 86, No. 2, 1999, pp. 774-778. doi:10.1063/1.370803
[3] J. Gonzalez-Hernandez, B. S. Chao, D. Strand, S. R. Ovshinsky, D. Pawlik and P. Gasiorowski, “The Relationship between Crystal Structure and Performance as 58 Optical Recording Media in Te-Ge-Sb Thin Films,” Applied Physics communications, Vol. 11, No. 4, 1992, pp. 557-581.
[4] J. Tominaga, T. Nakano and N. Atoda, “Double Optical Phase Transition of GeSbTe Thin Films Sandwiched between Two SiN Layers,” Japanese Journal of Applied Physics, Vol. 37, 1998, pp. 1852-1854. doi:10.1143/JJAP.37.1852
[5] G. Ruitenberg, A. K. Petford-Long and R. C. Doole, “Determination of the Isothermal Nucleation and Growth Parameters for the Crystallization of Thin Ge2Sb2Te5 Films,” Journal of Applied Physics, Vol. 92, No. 6, 2002, 92, p. 3166. doi:10.1063/1.1503166
[6] N. Ohshima, “Crystallization of Germanium-Antimony- Tellurium Amorphous Thin Film Sandwiched between Various Dielectric Protective Films,” Journal of Applied Physics, Vol. 79, No. 11, 1996, pp. 8357-8363. doi:10.1063/1.362548
[7] Z. L. Mao, H. Chen and A. L. Jung, “The Structure and Crystallization Characteristics of Phase Change Optical Disk Material Ge1Sb2Te4,” Journal of Applied Physics, Vol. 78, No. 4, 1995, pp. 2338-2342. doi:10.1063/1.360152
[8] B. Laine, C. Rivera-Rodriguez, E. Morales-Sanchez, E. Prokhorov, G. Trapaga and J. Gonzalez-Hernandez, “Isothermal Phase Transformation Ki-netics in Stoichiometric GeSbTe Thin Films,” Journal of Non-Crystalline Solids, Vol. 345-346, 2004, pp. 173-177. doi:10.1016/j.jnoncrysol.2004.08.017
[9] D. Claudio, J. Gonzalez-Hernandez, O. Licea, B. Laine, E. Prokhorov and G. Trapaga, “An Analytical Model to Represent Crystallization Kinetics in Materials with Metastable Phase Formation,” Journal of Non-Crystalline Solids, Vol. 352, 2006, pp. 51-55.
[10] J. W. Christian, “The Theory of Transformation in Metals and Alloys,” Pergamon Press, Oxford, 1975.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.