Ultrasonic Corrosion-Anodization: Electrochemical Cell Design and Process Range Testing


Titanium was used in the present work as the test metal for the first ultrasonic corrosion anodization (UCA) study, because of its important photonics and biomedical applications. The electrochemical cell design was implemented and tested under various experimental conditions combinations (e.g. electrolyte concentration, duration, temperature, ultra-sound presence or absence, oxygen presence, etc) in order to investigate the effect of those parameters in the cracks propagation in Ti-foils. It was found that an increase of cracks takes place when oxygen is provided in the electrolyte solution and when ultrasound is applied. The results presented in the current study could be exploitable towards design of materials having dendritic morphologies, applicable in a wide range of processes from photovoltaics to biocompatible materials.

Share and Cite:

K. Roushia, K. Polychronopoulou and C. Doumanidis, "Ultrasonic Corrosion-Anodization: Electrochemical Cell Design and Process Range Testing," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 1, 2012, pp. 1-10. doi: 10.4236/jsemat.2012.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman & Co, New York, 1982
[2] C. C. Doumanidis, “Nanomanufacturing of Random Branching Material Architectures,” Journal of Microelectronic Engineering, Vol. 86, No. 4-6, 2009, pp. 467-478. doi:10.1016/j.mee.2009.02.024
[3] M. D. Noskov, A. S. Malinovski, C. M. Cooke, K. A. Wright and A. J. Schwab, “Experimental Study and Simu- lation of Space Charge Stimulated Discharge,” Journal of Applied Physics, Vol. 92, No. 9, 2002, pp. 4926-4934. doi:10.1063/1.1506395
[4] B. Craig (Ed), “Corrosion,” In: Metals Handbook, Vol. 13, 9th Edition, Amer. Soc. Metals, 1987.
[5] E. V. Skorb, D. Fix, D. G. Shchukin, H. M?hwald, D. V. Sviridov, R. Mousa, N. Wanderka, J. Sch?ferhans, N. Pazos-Perez, A. Fery, D. V. Andreeva, “Sonochemical Formation of Metal Sponges,” In: Nanoscale, Advance first
[6] M. H. O. Kononen, E. T. Lavonius and J. K. Kivilahti, “SEM Observation on Stress Corrosion Cracking of Commercially Pure Titanium in a Topical Fluoride Solution,” Dental Materials, Vol. 11, No. 4, 1995, pp. 269-272. doi:10.1016/0109-5641(95)80061-1
[7] N. Nakamura, M. Akashi, Y. Fukaya and G. Nakayama “Stress—Corrosion Crack Initiation Behavior in a- Titanium used for nuclear Waste Disposal Overpack,” Corrosion 2000 Paper 00195, NACE International, Houston, 2000.
[8] G. Sanderson, D. T. Powell and J. C. Scully, “The “Stress —Corrosion Cracking of Ti Alloys in Aqueous Chloride Solutions at Room Temperature,” Corrosion Science, Vol. 8, 1968, pp. 473-481. doi:10.1016/S0010-938X(68)80002-2
[9] A. K. Roy, D. L. Fleming, D. C. Freeman and B. Y. Lum, “Stress Corrosion Cracking of Alloy C-22 and Ti Gr-12 using Double—Cantilever-Beam Technique,” Micron, Vol. 30, 1999, pp. 649-654. doi:10.1016/S0968-4328(99)00037-2
[10] D. J. Simbi and J. C. Scully, “The Intergranular Stress Corrosion Cracking of Ti 155 in Methanol/HCl at Room Temperature,” Corrosion Science, Vol. 34, 1993, pp. 1743-1750. doi:10.1016/0010-938X(93)90046-J
[11] H.-H. Huang, “Effects of Fluride Concentration and Elastic Tensile Strain on the Corrosion Resistance of Commercially Pure Titanium,” Biomaterials, Vol. 23, No. 1, 2002, pp. 59-63. doi:10.1016/S0142-9612(01)00079-5
[12] D. Dascalescu, K. Polychronopoulou and A. A. Polycar- pou, “The Significance of Tribochemistry on the Perfor- mance of PTFE-Based Coatings in CO2 Refrigerant En- vironment,” Surface and Coatings Technology, Vol. 204, No. 3, 2009, pp. 319-329. doi:10.1016/j.surfcoat.2009.07.042
[13] http://www.feppd.org/ICB-Dent/campus/biomechanics_in_dentistry/ldv_data/mech/basic_titanium.htm
[14] http://www.advent-rm.com
[15] W. Weaver, S. Timoshenko and D. H. Young, “Vibration Problems in Engineering,” D. Van Nostrand Company INV, Princeton, 2005, pp. 307-345.
[16] B. C. Syrett and R. N. Parkins, “The Effect of Sn and As on the Stress Corrosion of Cu-Zn alloys,” Corrosion Science, Vol. 10, No. 4, 1970, pp. 197-210.
[17] R. A. Cottis, “Guides to Good Practice in Corrosion Control—Stress Corrosion Cracking,” National Physical Laboratory, Teddington, UK, 2000.
[18] R. P. Gangloff and M. B. Ives (Eds.), “Environment- Induced Cracking of Metals,” NACE, Houston, 1990.
[19] R. H. Jones, “Stress Corrosion Cracking,” In: Metals Handbook, Vol. 13, Corrosion, ASM Metals Park, OH, 1987, pp. 145-162.
[20] H. I. McHenry, D. T. Read and T. R. Shives, “Failure Analysis of an Amine-Absorber Pressure Vessel,” Materials Performance, Vol. 26, No. 8, 1987, pp. 18-24.
[21] A. Turnbull, “Modelling of Environment-Assisted Cracking,” Corrosion Science, Vol. 34, No. 6 1993, pp. 921-960.
[22] H. O. M. Kiiniinen, E. T. Lavonius and J. K. Kivilahti, “SEM Observations on Stress Corrosion Cracking of Commercially Pure Titanium in a Topical Fluoride Solution,” Dental Materials, Vol. 11, No. 4, 1995, pp. 269-272.
[23] T. Christoforou and C. C. Doumanidis, “Biodegradable Cellulose Acetate Nanofiber Fabrication via Electro- spinning,” Journal of Nanoscience & Nanotechnology, Vol. 10, 2010, pp. 1-8.
[24] K. J. Kurzydlowski, “Microstructural Refinement and Properties of Metals Processed by Severe Plastic Deformation,” Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 52, No. 4, 2004, pp. 301-311.
[25] M. Gr?tzel, “Photoelectrochemical Cells,” Nature, Vol. 414, No. 6861, 2001, pp. 338344. doi:10.1038/35104607

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.