Molecular interactions between anticancer drugs and iodinated contrast media: An in vitro spectroscopic study

DOI: 10.4236/jbise.2012.51004   PDF   HTML     5,361 Downloads   9,183 Views   Citations


Purpose: The purpose of this study is to assess molecular interactions between several anticancer drugs and an iodinated contrast medium by Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV-Vis). Materials and Methods: Iopamidol (IPM) was used as an iodinated contrast medium, and mitomycin C (MTI), epirubicin hydrochloride (EPI), cisplatin (CDDP), 5-fluorouracil (5FU), irinotecan hydrochloride (CPT11), gemcitabine hydrochloride (dFdC), carboplatin (CBDCA), oxaliplatin (1OHP), paclitaxel hydrochloride (TAX) and docetaxel trihydrate (TXT) were used as anticancer drugs. For FT-IR, the purified IPM was mixed stoichiometrically with each anticancer drug as well as with a combination of MTI and EPI. After measuring each separated sample and the mixtures, the spectra of the mixtures were compared with the spectra of the sum of pure samples or the combination. For UV-Vis, IPM and anticancer drugs were dissolved in pure water; subsequently for the titration experiments, the mixtures were prepared by varying the molar ratio. IR absorption corresponds to stretching vibrations between atoms having covalent bonding, whereas UV-Vis spectra depend on molecular dynamics and shapes. Both UV-Vis and IR spectra change when there are molecular interactions such as aromatic ring stacking and hydrogen bonding. Result: IPM exhibited molecular interactions with MTI, EPI, CDDP, dFdC, CBDCA, 1OHP, TAX and TXT, as well as with the combination of MTI and EPI on FT-IR. However, molecular interactions were not observed on UV-Vis. Conclusion: Several anticancer drugs have molecular interactions with IPM, which could be clinically utilized for superselective intraarterial infusion chemotherapy.

Share and Cite:

Ishii, R. , Mori, H. , Matsumura, K. , Hongo, N. , Kiyosue, H. , Matsumoto, S. , Yoshimi, T. and Ujiie, S. (2012) Molecular interactions between anticancer drugs and iodinated contrast media: An in vitro spectroscopic study. Journal of Biomedical Science and Engineering, 5, 24-33. doi: 10.4236/jbise.2012.51004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Qureshi, A.I., Suri, M.F., Khan, J., Sharma, M., Olson, K., Guterman, L.R. and Hopkins, L. (2001) Superselective intra-arterial carboplatin for treatment of intracranial neoplasms: Experience in 100 procedures. Journal of Neuro-Oncology, 51, 151-158. doi:10.1023/A:1010683128853
[2] Ishii, A., Korogi, Y., Nishimura, R., Kawanaka, K., Yamura, M., Ikushima, I., Hirai, T., Yamashita, Y. and Shinohara, M. (2004) Intraarterial infusion chemotherapy for head and neck cancers: Evaluation of tumor perfusion with intraarterial CT during carotid arteriography. Radiation Medicine, 22, 254-259.
[3] Imai, S., Kajihara, Y., Munemori, O., Kamei, T., Mori, T., Handa, T., Akisada, K. and Orita, Y., (1995) Superselective cisplatin (CDDP)-carboplatin (CBDCA) combined infusion for head and neck cancers. European Journal of Radiology, 21, 94-99. doi:10.1016/0720-048X(95)00692-J
[4] Iida, E., Okada, M., Mita, T., Furukawa, M., Ito, K. and Matsunaga, N. (2008) Superselective intra-arterial chemotherapy for advanced maxillary sinus cancer: An evaluation of arterial perfusion with computed tomographic arteriography and of tumor response. Journal of Computer Assisted Tomography, 32,397-402. doi:10.1097/RCT.0b013e3181151331
[5] Homma, A., Oridate, N., Suzuki, F., Taki, S., Asano, T., Yoshida, D., Onimaru, R., Nishioka, T., Shirato, H. and Fukuda, S. (2009) Superselective high-dose cisplatin infusion with concomitant radiotherapy in patients with advanced cancer of the nasal cavity and paranasal sinuses: a single institution experience. Cancer, 115, 4705-4714. doi:10.1002/cncr.24515
[6] Rohde, S., Kovács, A.F., Turowski, B., Yan, B., Zanella, F. and Berkefeld, J. (2005) Intra-arterial high-dose chemotherapy with cisplatin as part of a palliative treatment concept in oral cancer. American Journal of Neuroradiology, 26, 1804-1809.
[7] Korogi, Y., Hirai, T., Nishimura, R., Hamatake, S., Sakamoto, Y., Murakami, R., Baba, Y., Arakawa, A., Takahashi, M., Uji, Y. and Taen, A. (1995) Superselective intraarterial infusion of cisplatin for squamous cell carcinoma of the mouth: Preliminary clinical experience. American Journal of Roentgenology, 165, 1269-1272.
[8] Doweck, I., Robbins, K., Samant, S. and Vieira, F. (2008) Intra-arterial chemoradiation for T3-4 oral cavity cancer: treatment outcomes in comparison to oropharyngeal and hypopharyngeal carcinoma. World Journal of Surgical Oncology, 6, 2. doi:10.1186/1477-7819-6-2
[9] Terayama, N., Sanada, J., Matsui, O., Kobayashi, S., Kawashima, H., Yamashiro, M., Takanaka, T., Kumano, T., Yoshizaki, T. and Furukawa, M. (2006) Feeding artery of laryngeal and hypopharyngeal cancers: Role of the superior thyroid artery in superselective intraarterial chemotherapy. CardioVascular and Interventional Radiology, 29, 536-543. doi:10.1007/s00270-005-0094-0
[10] Mitsudo, K., Shigetomi, T., Fujimoto, Y., Nishiguchi, H., Yamamoto, N., Furue, H., Ueda, M., Itoh, Y., Fuwa, N. and Tohnai, I. (2011) Organ preservation with daily concurrent chemoradiotherapy using superselective intra-arterial infusion via a superficial temporal artery for t3 and t4 head and neck cancer. International Journal of Radiation Oncology Biology Physics, 79, 1428-1435. doi:10.1016/j.ijrobp.2010.01.011
[11] Kobayashi, W., Teh, B.G., Sakaki, H., Sato, H., Kimura, H., Kakehata, S. and Nagahata, M., (2010) Superselective intra-arterial chemoradiotherapy with docetaxel-nedaplatin for advanced oral cancer. Oral Oncology, 46, 860-863. doi:10.1016/j.oraloncology.2010.10.001
[12] Kanoto, M., Oda, A., Hosoya, T., Nemoto, K., Ishida, A., Nasu, T., Koike, S. and Aoyagi, M. (2010) Impact of superselective transarterial infusion therapy of high-dose cisplatin on maxillary cancer with orbital invasion. American Journal of Neuroradiology, 31, 1390-1394. doi:10.3174/ajnr.A2082
[13] G?rich, J., Rilinger, N., Sokiranski, R., Vogel, J., Wikstr?m, M., Kr?mer, S., Merkle, E., Rieber, A. and Brambs, H.J. (1996) CT-guided intraarterial chemotherapy in locally advanced tumors. Radiology, 199, 567-570.
[14] Kinami, Y. and Miyazaki, I. (1978) The superselective and the selective one shot methods for treating inoperable cancer of the liver. Cancer, 41, 1720-1727. doi:10.1002/1097-0142(197805)
[15] Ando, E., Tanaka, M., Yamashita, F., Kuromatsu, R., Yutani, S., Fukumori, K., Sumie, S., Yano, Y., Okuda, K. and Sata, M. (2002) Hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma with portal vein tumor thrombosis: Analysis of 48 cases. Cancer, 95, 588-595. doi:10.1002/cncr.10694
[16] Matsumoto, S., Kiyosue, H., Komatsu, E., Wakisaka, M., Tomonari, K., Hori, Y., Matsumoto, A. and Mori, H. (2004) Radiotherapy combined with transarterial infusion chemotherapy and concurrent infusion of a vasoconstrictor agent for nonresectable advanced hepatic hilar duct carcinoma. Cancer, 100, 2422-2429. doi:10.1002/cncr.20265
[17] M?kel?, J., Kantola, R., Tikkakoski, T., Siniluoto, T., Leinonen, S., Kiviniemi, H., Laitinen, S. and Kairaluoma, M. (1997) Superselective intra-arterial chemotherapy with mitomycin C in hepatic metastases from colorectal cancer. Journal of Surgical Oncology, 65, 127-131. doi:10.1002/(SICI)1096-9098(199706)65:2<127::AID-JSO10>3.0.CO;2-2
[18] Tanaka, T., Sakaguchi, H., Anai, H., Yamamoto, K., Morimoto, K., Nishiofuku, H. and Kichikawa, K. (2004) Catheter position for adequate intra-arterial chemotherapy for advanced pancreatic cancer: Evaluation with CT during arterial injection of contrast material. Journal of Vascular and Interventional Radiology, 15, 1089-1097. doi:10.1097/01.RVI.0000131220.07444.7B
[19] Yamakawa, Y., Fujimura, M., Hidaka, T., Hori, S. and Saito, S. (2000) Neoadjuvant intraarterial infusion chemotherapy in patients with stage IB2-IIIB cervical cancer. Gynecologic Oncology, 77, 264-270. doi:10.1006/gyno.2000.5730
[20] Kobayashi, K., Furukawa, A., Takahashi, M. and Murata, K. (2003) Neoadjuvant intra-arterial chemotherapy for locally advanced uterine cervical cancer: Clinical efficacy and factors influencing response. CardioVascular and Interventional Radiology, 26, 234-241. doi:10.1007/s00270-003-0506-y
[21] Kokubo, M., Tsutsui, K., Nagata, Y., Okajima, K., Katakura, Y., Negoro, Y., Yamamoto, M. and Hiraoka, M. (1998) Radiotherapy combined with transcatheter arterial infusion chemotherapy for locally advanced cervical cancer. Acta Oncologica, 37, 143-149. doi:10.1080/028418698429694
[22] Sugiyama, T., Nishida, T., Hasuo, Y., Fujiyoshi, K. and Yakushiji, M. (1998) Neoadjuvant intraarterial chemotherapy followed by radical hysterectomy and/or radiotherapy for locally advanced cervical cancer. Gynecologic Oncology, 69, 130-136. doi:10.1006/gyno.1998.4976
[23] Steiner T. (2002) The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41, 49-76. doi:10.1002/1521-3773(20020104)
[24] Kaushal, A.M., Chakraborti, A.K. and Bansal, A.K. (2008) FTIR studies on differential intermolecular association in crystalline and amorphous states of structurally related non-steroidal anti-inflammatory drugs. Molecular Pharmaceutics, 5, 937-945. doi:10.1021/mp800098d
[25] Gago?, M., Menestrina, G., Niewiadomy, A. and Gruszecki, W.I. (2005) Molecular organization of the antifungal and anticancer drug 2-(2,4-dihydroxyphenylo)-5,6-dichlorobenzothiazole in solution and in monolayers: An effect of pH. Journal of Photochemistry and Photobiology B: Biology, 80, 101-106. doi:10.1016/j.jphotobiol.2005.03.004
[26] Selvaraj, V. and Alagar, M. (2007) Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. International Journal of Pharmaceutics, 337, 275-281. doi:10.1016/j.ijpharm.2006.12.027
[27] Sanders, J.K.M. and Hunter, C.A. (1990) The nature of π-π intreactions. Journal of the American Chemical Society, 112, 5525-5534. doi:10.1021/ja00170a016
[28] Hemley, R., Kohler, B.E. and Siviski, P. (1979) Absorption spectra for the complexes formed from vitamin-A and beta-lactoglobulin. Biophysical Journal, 28, 447-455. doi:10.1016/S0006-3495(79)85192-9

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.