Assessment of Impacts and Risks of Air Pollution Applying Two Strategies of Numerical Chemistry Transport Modelling


Assessment of harmful impacts and risks of air pollution in case of accidents as well as of long lasting exposition is an important challenge of chemical transport modeling. Sad confirmation of this statement unexpectedly has come from the nuclear power plant accident in Fukushima which occurred while this paper was finalized. Two strategies to comply with the task of impact and risk assessment in extended regions like Central Europe or the Balkans are described. The first one is characterized by application of a single model system to an extended domain. The other one is based on the combined application of several chemical transport models designed for the use in various sub-domains in the region under consideration. Advantages and disadvantages exist for both approaches. For instance, the single model strategy allows unified and harmonized assessment of risks in a larger region, whereas the combined model strategy may pro-vide faster and locally more specific response in emergency cases. The single model approach is treated exploiting applications of the EURAD model system. The combined model approach is a novel way of joint use of chemical transport model systems developed for the Balkans. The models are described and the accuracy of simulations carried out with them is briefly demonstrated by comparison of simulated and observed concentrations of air pollutants. Applications regarding the search of sources for high pollution events and the assessment of risks through known sources are exem-plarily discussed.

Share and Cite:

A. Ebel, D. Melas, K. Ganev, M. Banja, I. Sandu, E. Friese, T. Giannaros, H. Jakobs, I. Kioutsioukis, K. Markakis, M. Memmesheimer, N. Miloshev, V. Pescaru and A. Poupkou, "Assessment of Impacts and Risks of Air Pollution Applying Two Strategies of Numerical Chemistry Transport Modelling," Journal of Environmental Protection, Vol. 3 No. 1, 2012, pp. 26-40. doi: 10.4236/jep.2012.31004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. Farago, K. Georgiev, A. Havasi, “Advances in Air Pol- lution Modeling for Environmental Security,” Springer, New York, 2005. doi:10.1007/1-4020-3351-6
[2] D. Melas, I. Sandu, G. Kostadien and H. Manjola, “Mod- elling System for Emergency Response to the Release of Harmful Substances in the Atmosphere,” NATO, Brus- sels, 2006.
[3] M. Memmesheimer, E. Friese, A. Ebel, H. J. Jakobs, H. Feldmann, C. Kessler and G. Piekorz, “Long-Term Simu- lations of Particulate Matter in Europe on Different Scales Using Sequential Nesting of a Regional Model,” Interna- tional Journal of Environment and Pollution, Vol. 22, No. 1-2, 2004, pp. 108-132.
[4] I. J. Ackermann, H. Hass, M .Memmesheimer, A. Ebel, F. B. Binkowski and U. Shankar, “Modal Aerosol Dynamics Model for Europe: Development and First Applications,” Atmospheric Environment, Vol. 32, No. 17, 1998, pp. 2891-2999. doi:10.1016/S1352-2310(98)00006-5
[5] B. Schell, I. J. Ackermann, H. Hass, F. S. Binkowski and A. Ebel, “Modeling the Formation of Secondary Organic Aerosol within a Comprehensive Air Quality Modeling System,” Journal of Geophysical Research, Vol. 106, No. D22, 2001, pp. 28275-28293. doi:10.1029/2001JD000384
[6] F. A. Gifford, “Atmospheric Dispersion Calculations Us- ing the Generalized Gaussian Plume Model,” Nuclear Safety, Vol. 2, No. 2, 1960, pp. 56-68.
[7] D. B. Turner, “Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling,” 2nd Edition, CRC Press, Boca Raton, 1994.
[8] W. B. Petersen and L. G. Lavdas, “INPUFF 2.0. A Multi- ple Source Gaussian Puff Dispersion Algorithm,” User’s Guide, EPA/600/8-86/024, Washington, DC, 1986.
[9] I. Sandu, V. Cuculeanu and N. Romanof, “Statistical Per- formance of Few Dispersion Schemes for Tracer Experi- ment Data at a Nuclear Power Plant,” Proceeding of 5th International Conference on Harmonization within At- mosphere Dispersion Model for Regulatory Purposes, Rhodes, 18-21 May 1998.
[10] M. R. Beychok, “Fundamentals of Stack Gas Dispersion,” 4th Edition, Milton Beychok, Irvine, 2005.
[11] EMEP/EEA, Air Pollutant Emission Inventory Guide- book, Technical Report, EEA. bstart=450&c5=air, 2009
[12] A. G. Grell, J. Dudhia and D. R. Stauffer, “A Description of the Fifth-Generation PennState/NCAR Mesoscale Mo- del (MM5),” NCAR Technical Notes, Boulder, 1993.
[13] B. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang and J. G. Powers, “A Description of the Advanced Research WRF Version 3,” NCAR Technical Notes, Boulder, 2008.
[14] W. R. Stockwell, F. Kirchern and M. Kuhn, “A New Mechanism for Regional Atmospheric Chemistry Model- ling,” Journal of Geophysical Research, Vol. 102, No. D22, 1997, pp. 25847-25879. doi:10.1029/97JD00849
[15] H. Geiger, I. Barnes, I. Bejan, T. Benter and M. Spitler, “The Tropospheric Degradation of Isoprene: An Updated Module for the Regional Atmospheric Chemistry Me- chanism,” Atmospheric Environment, Vol. 37, No. 11, 2003, pp. 1503-1519. doi:10.1016/S1352-2310(02)01047-6
[16] F. S. Binkowski, “Aerosols in MODELS-3 CMAQ,” in Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modelling System,” EPA 600/R-99-030, Washington, DC, 1999.
[17] E. Friese, M. Memmesheimer, I. J. Ackermann, H. Hass, A. Ebel and M. J. Kerschgens, “A Study of Aerosol/ Cloud Interactions with a Comprehensive Air Quality Model,” Journal of Aerosol Science, Vol. 31, S1, 2000, pp. 54-55. doi:10.1016/S0021-8502(00)90061-2
[18] E. Friese and A. Ebel, “Temperature Dependent Thermodynamic Model of the System H+-NH4+-Na+- - -Cl–-H2O,” Journal of Physical Chemistry A, Vol. 114, No. 43, 2010, pp. 11595-11631. doi:10.1021/jp101041j
[19] LUA, Landesumweltamt Nordrhein-Westfalen, “Emissions- kataster Luft Nordrehin-Westfalen 1996/1997,” Report, LANUV, Recklinghausen, Essen, 1999.
[20] H. J. Jakobs, “Detailed Air Quality Forecast, Analysis for Yesterday,” 2010.
[21] ENVIRON, “User’s guide CAMx—Comprehensive Air Quality Model with Extensions, Version 4.40,” ENVI- RON International Co., Groton, 2006.
[22] A. J. H. Visschedijk, P. Y. J. Zandveld and H. A. C. A. D. van der Gon, “High Resolution Gridded European Emi- ssion Database for the EU Integrate Project GEMS, TNO- Report, Bedford, 2007.
[23] A. Hollingsworth, R. J. Engelen, C. Textor, A. Benedetti, O. Boucher, F. Chevallier, A. Dethof, H. Elbern, H. Eskes, J. Flemming, C. Granier, J. W. Kaiser, J.-J. Morcrette, P. Rayner, V.-H. Peuch, L. Rouil, M. G. Schultz and A. J. Simmons, “Toward a Monitoring and Forecasting System for Atmospheric Composition: The GEMS Project B,” Bulletin of the American Meteorological Society, Vol. 89, No. 8, 2008, pp. 1147-1164. doi:10.1175/2008BAMS2355.1
[24] R. Friedrich, “GENEMIS—Assessment, Improvement, Temporal and Spatial Disaggregating of European Emi- ssion Data,” In: A. Ebel, R. Friedrich and H. Rhode, Eds., Tropospheric Modelling and Emission Estimation, (PART 2). Springer, New York, 1997.
[25] K. Markakis, A. Poupkou, D. Melas, P. Tzoumaka and M. Petrakakis, “A Computational Approach Based on GIS Technology for the Development of an Anthropogenic Emission Inventory of Gaseous Pollutants in Greece,” Earth and Environmental Science, Vol. 207, No. 1-4, 2010, pp.157-180. doi:10.1007/s11270-009-0126-5
[26] K. Markakis, A. Poupkou, D. Melas and C. Zerefos, “A GIS Based Anthropogenic PM10 Emission Inventory for Greece,” Atmospheric Pollution Research, Vol. 1, No. 2, 2010, pp. 71-78. doi:10.5094/APR.2010.010
[27] I. Kioutsioukis, A. Poupkou, E. Katragkou, T. Giannaros, K. Markakis, D. Balis, D. Melas and C. Zerefos, “An Evaluation of the MM5/CAMx System for Europe,” ESA Atmospheric Science Conference, Barcelona, 7-11 Sep- tember 2009.
[28] I. Kioutsioukis, A. Poupkou, E. Katragkou, T. Giannaros, K. Markakis, D. Balis, D. Melas and C. Zerefos, “Per- formance Evaluation of the MM5/CAMX System for Europe (2003),” 10th International Conference on Mete- orology, Climatology and Atmospheric Physics, Patra, 25-28 May 2010.
[29] I. Kioutsioukis, A. Poupkou, E. Katragkou, T. Giannaros, K. Markakis, D. Balis, D. Melas and C. Zerefos, “Evalua- tion of the MM5/CAMx System for Europe,” Atmos- pheric Environment, to be Submitted, 2010.
[30] A. Poupkou, D. Melas, I. Kioutsioukis, I. Lisaridis, P. Symeonidis and D. Balis, “Regional Air Quality Fore- casting over Greece within PROMOTE,” Electronic Pro- ceedings of the Atmospheric Science Conference, Frascati, 8-12 May 2006.
[31] A. Poupkou, I. Kioutsioukis, I. Lisaridis, K. Markakis, T. Giannaros, E. Katragkou, D. Melas, C. Zerefos and L. Viras, “Evaluation in the Greater Athens Area of an Air Quality Forecast System,” Proceedings of the IX EMTE National-International Conference of Meteorology-Cli- matology and Atmospheric Physics, Thessaloniki, 28-31 May 2008, pp 759-766.
[32] A. Poupkou, T. Giannaros, K. Markakis, I. Kioutsioukis, G. Curci, D. Melas and C. Zerefos, “Development of a Biogenic NMVOCs Emission Model,” Environmental Modelling and Software, 2010, in Press.
[33] P. Symeonidis, A. Poupkou, A. Gkantou, D. Melas, O. D. Yay, E. Pouspourika and D. Balis, “Development of a Computational System for Estimating Biogenic NMVOCs Emissions Based on GIS Technology,” Atmospheric En- vironment, Vol. 42, No. 8, 2008, pp. 1777-1789. doi:10.1016/j.atmosenv.2007.11.019
[34] J. Flemming, “Technical Description of the Coupled Forecast System IFS-CTM for Global Reactive Gases Forecast and Assimilation in GEMS, 2008.
[35] W. P. L. Carter, “Condensed Atmospheric Photooxidation Mechanisms for Isoprene,” Atmospheric Environment, Vol. 30, No. 24, 1996, pp. 4275-4290. doi:10.1016/1352-2310(96)00088-X
[36] J. S. Chang, R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell and C. J. Walcek, “A Three- Dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation,” Journal of Geophysical Re- search, Vol. 92, No. D12, 1987, pp. 14681-14700. doi:10.1029/JD092iD12p14681
[37] A. Nenes, C. Pilinis and S. N. Pandis, “ISORROPIA: A New Thermodynamic Model for Multiphase Multicom- ponent Inorganic Aerosols,” Aquatic Geochemistry, Vol. 4, No. 1, 1998, pp. 123-152. doi:10.1023/A:1009604003981
[38] A. Nenes, C. Pilinis and S. N. Pandis, “Continued Development and Testing of a New Thermodynamic Aerosol Module for Urban and Regional Air Quality Models,” Atmospheric Environment, Vol. 33, No. 10, 1999, pp. 1553-1560. doi:10.1016/S1352-2310(98)00352-5
[39] R. Strader, F. Lurmann and S. N. Pandis, “Evaluation of Secondary Organic Aerosol Formation in Winter,” At- mospheric Environment, Vol. 33, No. 29, 1999, pp. 4849- 4863. doi:10.1016/S1352-2310(99)00310-6
[40] D. Byun and J. Ching, “Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System,” EPA Report, Washington DC, 1999.
[41] D. Byun and K. L. Schere, “Review of the Governing Equations, Computational Algorithms, and Other Com- ponents of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System,” Applied Mechanics Reviews, Vol. 59, No. 2, 2006, pp. 51-77. doi:10.1115/1.2128636
[42] M. Memmesheimer, H. Feldmann, C. Kessler, E. Friese, H. J. Jakobs, G. Piekorz and A. Ebel, “Ausbreitungs- rechnungen zur Ermittlung der Luftqualit?t in NRW mit einem komplexen Aerosol-Chemie-Transport-Modell (ATLANTIS),” Abschlussbericht Rhein, Institut für Umweltforschung an der Universit?t zu K?ln und Landesumweltamt NRW, Düsseldorf, 2006.
[43] M. Memmesheimer, E. Friese, H. J. Jakobs, C. Kessler, H. Feldmann, G. Piekorz and A. Ebel, “Lokal Gepr?gte Ozonspitzenwerte in Nordrhein-Westfalen: Ursachen und Minderungspotential für ein ausgew?hltes Gebiet im K?lner Süden (OZURMI),” Abschlussbericht Rhein, Ins- titut für Umweltforschung an der Universit?t zu K?ln und Landesumweltamt NRW, Düsseldorf, 2005.
[44] P. Bruckmann, J. Geiger, U. Hartmann and S. Wurzler, “Die Ozonepisode im Juli/August 2003. Vorl?ufiger Beri- cht des Landesumweltamtes Nordrhein-Westfalen. Essen, 2003. 2003

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.