Metagenomic profiles of soil microbiota under two different cropping systems detected by STRs-based PCR

Abstract

In this research, soil microbial structures under a wheat triennial monoculture and horse bean-wheat-horse bean succession were evidenced using a metagenomic approach. Polymorphism analysis of DNA extracted from soil samples collected at the end of the third year of the two crop successions, was performed by PCR, carried-out with six different primers designed on simple tandem repeats sequences. Readable profiles were obtained with M13 primer, from which no polymorphisms were detected, and with the primer (GACA)4, that gave distinctive patterns. Experimental findings suggest that metagenomic analysis performed by (GACA)4 primer may be an easy and suitable method to discriminate microbial diversity of different crop successions. (GACA)4 PCR-pattern indicate that soil microbiota changes are well correlated with crop succession.

Share and Cite:

Zaccardelli, M. , Villecco, D. , Campanile, F. and Pane, C. (2012) Metagenomic profiles of soil microbiota under two different cropping systems detected by STRs-based PCR. Agricultural Sciences, 3, 98-103. doi: 10.4236/as.2012.31013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Torsvik, V. and Ovreas, L. (2002) Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5, 240-245. doi:10.1016/S1369-5274(02)00324-7
[2] Barrios, E. (2007) Soil biota, ecosystem services and land productivity. Ecological Economics, 64, 269-285. doi:10.1016/j.ecolecon.2007.03.004
[3] Pane, C., Villecco, D., Pentangelo,A., Lahoz, E. and Zaccardelli, M. (2011) Integration of soil solarization with Brassica carinata seed meals amendment in a greenhouse lettuce production system. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. doi:10.1080/09064710.2011.613850
[4] Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G. and Renella, G. (2003) Microbial diversity and soil functions. European Journal of Soil Science, 54, 655-670. doi:10.1046/j.1351-0754.2003.0556.x
[5] Maron, P.A., Mougel, C. and Ranjard, L. (2011) Soil microbial diversity: Methodological strategy, spatial overview and functional interest. Comptes Rendus Biologies, 334, 403-411. doi:10.1016/j.crvi.2010.12.003
[6] Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J. and Goodman, R.M. (2000) Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured micro-organisms. Applied and Environmental Microbiology, 66, 2541-2547. doi:10.1128/AEM.66.6.2541-2547.2000
[7] Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. and Goodman R.M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, 245-249. doi:10.1016/S1074-5521(98)90108-9
[8] Kell, D.B., Kaprelyants, A.S., Weichart, D.H., Harwood, C.R. and Barer, M.R. (1998) Viability and activity in readily culturable bacteria: A review and discussion of the practical issues. Antonie van Leeuwenhoek, 73, 169-187. doi:10.1023/A:1000664013047
[9] Fierer N., Jackson, J.A., Vilgalys, R. and Jackson, R.B. (2005) Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays. Applied and Environmental Microbiology, 71, 4117-4120. doi:10.1128/AEM.71.7.4117-4120.2005
[10] Plassart, P., Vinceslas, M.A., Gangneux, C., Mercier, A., Barray, S. and Laval, K. (2008) Molecular responses of soil microbial communities under grassland restoration. Agriculture, Ecosystems and Environment, 127, 286-293. doi:10.1016/j.agee.2008.04.008
[11] Crecchio, C., Gelsomino, A., Ambrosoli, R., Minati, J.L. and Ruggiero, P. (2004) Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biology & Biochemistry, 36, 1873-1883. doi:10.1016/j.soilbio.2004.05.008
[12] Lopes, A.R., Faria, C., Prieto-Fernandez, á. Trasar-Cepeda, C., Manaia, C.M. and Nunes, O.C. (2011) Comparative study of the micobial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biology & Biochemistry, 43, 115-125. doi:10.1016/j.soilbio.2010.09.021
[13] Versalovic, J., Koeuth, T. and Lupski, J.R. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomics. Nucleic Acid Research, 19, 6823-6831. doi:10.1093/nar/19.24.6823
[14] Thies, J.E. (2004) Eco-biological soil assessment: Analytical approaches through molecular methods. Procedings of I International Conference: Soil and compost eco-biology. 15-17 Sep-tember 2004, León, Spain.
[15] Kirk, J.L., Beaduette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H. and Trevors, J.T. (2004) Methods of studying soil microbial diversity. Journal of microbiological methods, 58, 169-188. doi:10.1016/j.mimet.2004.04.006
[16] Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, AS. and Christophe, D. (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science, 235, 683-684. doi:10.1126/science.2880398
[17] Epplen, J.T. (1988) On simple repeated GATCA sequences in animal genomes: a critical reappraisal. Journal of Heredity, 79, 409-417.
[18] Ali, S., Muller, C.R. and Epplen, J.T. (1986) DNA fingerprinting by oligonucleotide probes specific for simple repeats. Human Genetics, 74, 239-243. doi:10.1007/BF00282541
[19] Vogel, J.M. and Scolnik, P.A. (1997) Direct amplifications from microsatellites: detection of simple sequence repeat-based polymorphisms without cloning. In: Caetano-Anollés, G. and Gresshoff, P.M., Eds., DNA Markers: Protocols, Applications and Overviews, Wiley, John and Sons, New York, 133-150.
[20] Zhou, J., Bruns, M.A. and Tiedje, J.M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62, 316-322.
[21] Khashnobish, A., Hamann, A., Osiewacz, H.D. (1999) Modulation of gene expression by (CA)n microsatellites in the filamentous ascomycete Podospora anserina. Applied Microbiology and Biotechnology, 52, 191-195. doi:10.1007/s002530051508
[22] Yurkov, A.M., Chernov, I.Y. (2005). Geographical Races of Certain Species of Ascomycetous Yeasts in the Moscow and Novosibirsk Regions. Microbiology, 74, 597- 601. doi:10.1007/s11021-005-0108-6
[23] Harish, S., Kavino, M., Kumar, N., Balasubramanian, P., Samiyappan, R. (2009). Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control, 51, 16-25. doi:10.1016/j.biocontrol.2009.06.002
[24] Anderson, I., Chambers, S., Cairney, J. (2009) Taxonomy and population biology of south-eastern australian Pisolithus species. Australasian Mycologist, 18, 37.
[25] Midgley, D., Chambers, S., Liu, G., Williams, A., Cairney, J. (2009) Molecular determination of diversity in ericoid mycorrhizal endophytes from Woollsia pungens (Cav.) F. Muell. (Epacridaceae). Australasian Mycologist, 18, 39.
[26] Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy: the principles and practice of numerical classification, San Francisco, freeman, 573.
[27] Vauterin, L. and Vauterin, P. (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. European Microbiology, 1, 37-42.
[28] Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X. and Chen, Y. (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety, 67, 75-81. doi:10.1016/j.ecoenv.2006.03.007
[29] Brimecombe, M.J., De Leij, F.A. and Lynch, J.M. 2001. The effect of root exudates on rhizosphere microbial populations. In: Pinton, R., Varaninin, Z. and Nannipieri, P., Eds., The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, M. Dwekker, New York, 95-140.
[30] Grayston, S.J., Shenquiang, W., Campbell, C.D. and Edwards, A.C. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology & Biochemistry, 30, 369-378. doi:10.1016/S0038-0717(97)00124-7
[31] Larkin, R.P. and Honeycutt, C.W. (2006). Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology, 96, 68-79. doi:10.1094/PHYTO-96-0068
[32] Srivastava, R., Roseti, D. and Sharma, A.K. (2007). The evaluation of microbial diversity in a vegetable based cropping system under organic farming practices. Applied Soil Ecology, 36, 116-123. doi:10.1016/j.apsoil.2007.01.008
[33] Acosta-Martínez, V., Dowd, S.E., Bell, C.W., Lascano, R., Booker, J.D., Zobeck, T.M. and Upchurch, D.R. (2010). Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity, 2, 910-931. doi:10.3390/d2060910
[34] Ettema, C.H. and Wardle, D.A. (2002) Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183. doi:10.1016/S0169-5347(02)02496-5
[35] Fierer, N. (2008). Microbial biogeography: patterns in microbial diversity across space and time. In: Zengler, K., Ed., Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back, ASM Press, Washington DC, 95-115

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.