Share This Article:

Synthesis of Capsaicin Oligosaccharides and Their Anti-Allergic Activity
——Synthesis of Capsaicin Oligosaccharides as Anti-Allergic Food-Additives

Abstract Full-Text HTML Download Download as PDF (Size:214KB) PP. 45-49
DOI: 10.4236/aces.2012.21006    4,731 Downloads   8,992 Views   Citations


The production of β-maltooligosaccharides of capsaicin was investigated using Lactobacillus delbrueckii and cyclodextrin glucanotransferase (CGTase) as biocatalysts. The cells of L. delbrueckii glucosylated capsaicin to give its β-glucoside. The β-glucoside of capsaicin was converted into the corresponding β-maltoside and β-maltotrioside by CGTase. On the other hand, β-melibioside and β-isomaltoside of capsaicin, which were two new compounds, were synthesized by chemical glycosylation. The β-glucoside, β-maltoside, β-melibioside, and β-isomaltoside of capsaicin showed inhibitory effects on IgE antibody production.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Shimoda, N. Kubota and M. Akagi, "Synthesis of Capsaicin Oligosaccharides and Their Anti-Allergic Activity
——Synthesis of Capsaicin Oligosaccharides as Anti-Allergic Food-Additives," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 45-49. doi: 10.4236/aces.2012.21006.


[1] T. Kawada, K. Hagihara and K. Iwai, “Effects of Capsaicin on Lipid Metabolism in Rats Fed a High Fat Diet,” Journal of Nutrition, Vol. 116, No. 7, 1985, pp. 1272-1278.
[2] Y. J. Surh and S. S. Lee, “Capsaicin, a Double Edged Sword: Toxicity, Metabolism, and Chemopreventative Potential (Review),” Life Sciences, Vol. 56, No. 22, 1995, pp. 1845-1855. doi:10.1016/0024-3205(95)00159-4
[3] K. K. Park, K. S. Chun, J. I. Yook and Y. J. Surh, “Lack of Tumor Promoting Activity of Capsaicin, a Principal Pungent Ingredient of Red Peppers, in Mouse Skin Carcinoens,” Anticancer Research, Vol. 18, No. 6A, 1998, pp. 4201-4205.
[4] Y. J. Surh, E. Lee and J. M. Lee, “Chemopreventive Properties of Some Pungent Ingredients Present in Red Pepper and Ginger,” Mutation Research, Vol. 402, No. 1, 1998, pp. 259-267. doi:10.1016/S0027-5107(97)00305-9
[5] M. H. Ward and L. Lopez-Carrillo, “Dietary Factors and the Risk of Gastric Cancer in Mexico City,” American Journal of Epidemiology, Vol. 149, No. 10, 1999, pp. 925-932.
[6] T. Watanabe, T. Kawada, M. Yamamoto and K. Iwai, “Capsaicin, a Pungent Principle of Hot Red Pepper, Evokes Catecholamine Secretion from the Adrenal Medulla of Anesthetized Rats,” Biochemical and Biophysical Research Communications, Vol. 142, No. 1, 1987, pp. 259-264. doi:10.1016/0006-291X(87)90479-7
[7] E. Lewinson, E. Berman, Y. Mazur and J. Gressel, “Glucosylation of Exogenous Flavanones by Grapefruit (Citrus paradisi) Cell Cultures,” Phytochemistry, Vol. 25, 1986, pp. 2531-2535. doi:10.1016/S0031-9422(00)84502-1
[8] M. Tabata, Y. Umetani, M. Ooya and S. Tanaka, “Glucosylation of Phenolic Compounds by Plant Cell Cultures,” Phytochemistry, Vol. 27, No. 3, 1988, pp. 809-813. doi:10.1016/0031-9422(88)84097-4
[9] B. Upmeier, J. E. Thomzik and W. Barz, “Nicotinic Acid-N-Glucoside in Heterotrophic Parsley Cell Suspension Cultures,” Phytochemistry, Vol. 27, No. 11, 1988, pp. 3489-3493. doi:10.1016/0031-9422(88)80754-4
[10] T. Furuya, M. Ushiyama, Y. Ashida and T. Yoshikawa, “Biotransformation of 2-Phenylpropionic Acid in Root Culture of Panax ginseng,” Phytochemistry, Vol. 28, No. 2, 1989, pp. 483-487. doi:10.1016/0031-9422(89)80036-6
[11] M. Ushiyama, T. Asada, T. Yoshikawa and T. Furuya, “Biotransformation of Aromatic Carboxylic Acids by Root Culture of Panax ginseng,” Phytochemistry, Vol. 28, No. 11, 1989, pp. 1859-1869. doi:10.1016/S0031-9422(00)97875-0
[12] T. Suga and T. Hirata, “Biotransformation of Exogenous Substrates by Plant Cell Cultures,” Phytochemistry, Vol. 29, No. 8, 1990, pp. 2393-2406. doi:10.1016/0031-9422(90)85155-9
[13] K. Ishihara, H. Hamada, T. Hirata and N. Nakajima, “Biotransformation Using Plant Cultured Cells,” Journal of Molecular Catalysis B: Enzymatic, Vol. 23, No. 2-6, 2003, pp. 145-170.
[14] K. Morohoshi, F. Shiraishi, Y. Oshima, T. Koda, N. Nakajima, J. S. Edmonds and M. Morita, “Synthesis and Es-Trogenic Activity of Bisphenol a Mono- and Di-Beta-D-Glucopyranosides, Plant Metabolites of Bisphenol A,” Environmental Toxicology and Chemistry, Vol. 22, No. 10, 2003, pp. 2275-2279. doi:10.1897/02-464
[15] S. Kwon, K. Shimoda, H. Hamada, K. Ishihara, N. Masuoka and H. Hamada, “High Production of β-Thujaplicin Glycosides by Immobilized Plant Cells of Nicotiana tabacum,” Acta Biologica Hungarica, Vol. 59, No. 3, 2008, pp. 347-355. doi:10.1556/ABiol.59.2008.3.8
[16] H. Katsuragi, K. Shimoda, A. Ohiro and H. Hamada, “Glycosylation of Capsaicinoids with Panax ginseng Stimulated by Salicylic Acid,” Acta Biologica Hungarica, Vol. 61, No. 4, 2010, pp. 449-456. doi:10.1556/ABiol.61.2010.4.8
[17] K. Shimoda, H. Hamada, “Synthesis of β-Maltooligosac-charides of Glycitein and Daidzein and Their Anti-Oxidant and Anti-Allergic Activities,” Molecules, Vol. 15, No. 8, 2010, pp. 5153-5161. doi:10.3390/molecules15085153
[18] K. Shimoda and H. Hamada, “Production of Hesperetin Glycosides by Xanthomonas campestris and Cyclodextrin Glucanotransferase and Their Anti-Allergic Activities,” Nutrients, Vol. 2, No. 2, 2010, pp. 171-180. doi:10.3390/nu2020171
[19] K. Shimoda and H. Hamada, “Enzymatic Synthesis and Anti- Allergic Activities of Curcumin Oligosaccharides,” Biochemistry Insights, Vol. 2010, No. 3, 2010, pp. 1-5.
[20] A. Koda, T. Miura, N. Inagaki, O. Sakamoto, A. Arimura, H. Nagai and H. Mori, “A Method for Evaluating Anti-Allergic Drugs by Simultaneously Induced Passive Cutaneous Anaphylaxis and Mediator Cutaneous Reactions,” International Archives of Allergy and Applied Immunology, Vol. 92, No. 3, 1990, pp. 209-216. doi:10.1159/000235179

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.