Different Effects of TERT, TP63, and CYP2A6 Polymorphism on Individual Risk of Tobacco-Related Lung Cancer in Male Japanese Smokers

Abstract

Recent genome-wide association studies have identified lung cancer susceptibility loci, such as chromosome 5p15 (telomerase reverse transcriptase, TERT and cleft lip and palate transmembrane protein 1-like, CLPTM1L), 15q25 (nicotinic cholinergic receptor α, CHRNA3-CHRNA5), and 3q28 (tumor protein p63, TP63). Replication study was performed to confirm the association of the recently-identified susceptible loci (i.e., TERT-CLPTM1L, CHRNA3-CHRNA5, and TP63) in a total of 1460 male Japanese smokers (885 lung cancer cases and 575 healthy control subjects), which were previously studied for a low odds ratio of impaired or deletion polymorphism in cytochrome P450 2A6 (CYP2A6) for lung cancer risk. The minor allele frequency (0.442) of rs2736100 on 5p15 (TERT) was significantly higher in lung cancer cases than that (0.395) of controls, with an odds ratio of 1.27 (95% CI of 1.07 - 1.50, p = 0.00504). A series of subgroup analyses revealed the significant associations of rs4488809 (TP63, odds ratio of 1.21, p = 0.0422) and rs2736100 (TERT, odds ratio of 1.47, p = 6.40 × 10–5) with the risk of lung adenocarcinoma. No significant association of CHRNA3-CHRNA5 and CLPTM1L was found in this population. The present results support replication of the association of TERT and TP63 loci with lung adenocarcinomas and suggest subtype-specific effects of these loci on higher risk of lung cancer in smokers. The CYP2A6 including copy number polymorphism, uninvestigated in large-scale genome-wide association studies, may influence lower risk to heavy tobacco use-related lung cancer.

Share and Cite:

M. Shimizu, K. Kiyotani, H. Kunitoh, T. Kamataki and H. Yamazaki, "Different Effects of TERT, TP63, and CYP2A6 Polymorphism on Individual Risk of Tobacco-Related Lung Cancer in Male Japanese Smokers," Journal of Cancer Therapy, Vol. 2 No. 5, 2011, pp. 690-696. doi: 10.4236/jct.2011.25093.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] The Tobacco and Genetic Consortium, “Genome-Wide Metaanalyses Identify Multiple Loci Associated with Smoking Behavior,” Nature Genetics, Vol. 42, No. 5, 2010, pp. 441-447. doi:10.1038/ng.571
[2] J. Z. Liu, F. Tozzi, D. M. Waterworth, S. G. Pillai, P. Muglia, L. Middleton, et al., “Meta-Analysis and Imputation Refines the Association of 15q25 with Smoking Quantity,” Nature Genetics, Vol. 42, No. 5, 2010, pp. 436-440. doi:10.1038/ng.572
[3] N. L. Saccone, R. C. Culverhouse, T. H. Schwantes-An, D. S. Cannon, X. Chen, S. Cichon, et al., “Multiple Independent Loci at Chromosome 15q25.1 Affect Smoking Quantity: A Meta-Analysis and Comparison with Lung Cancer and COPD,” PLoS Genetics, Vol. 6, No. 8, 2010, p. e1001053. doi:10.1371/journal.pgen.1001053
[4] E. D. Pleasance, P. J. Stephens, S. O’Meara, D. J. Mc- Bride, A. Meynert, D. Jones, et al., “A Small-Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure,” Nature, Vol. 463, No. 7278, 2010, pp. 184-190. doi:10.1038/nature08629
[5] T. Truong, R. J. Hung, C. I. Amos, X. Wu, H. Bickeboller, A. Rosenberger, et al., “Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: a Pooled Analysis from the International Lung Cancer Consortium,” Journal of the National Cancer Institute, Vol. 102, No. 13, 2010, pp. 959-971. doi:10.1093/jnci/djq178
[6] Y. Wang, P. Broderick, E. Webb, X. Wu, J. Vijayakrishnan, A. Matakidou, et al., “Common 5p15.33 and 6p21.33 Variants Influence Lung Cancer Risk,” Nature Genetics, Vol. 40, No. 12, 2008, pp. 1407-1409. doi:10.1038/ng.273
[7] M. T. Landi, N. Chatterjee, K. Yu, L. R. Goldin, A. M. Goldstein, M. Rotunno, et al., “A Genome-Wide Association Study of Lung Cancer Identifies a Region of Chromosome 5p15 Associated with Risk for Adenocarcinoma,” American Journal of Human Genetics, Vol. 85, No. 5, 2009, pp. 679-691. doi:10.1016/j.ajhg.2009.09.012
[8] C. I. Amos, X. Wu, P. Broderick, I. P. Gorlov, J. Gu, T. Eisen, et al., “Genome-Wide Association Scan of Tag SNPs Identifies a Susceptibility Locus for Lung Cancer at 15q25.1,” Nature Genetics, Vol. 40, No. 6, 2008, pp. 616-622. doi:10.1038/ng.109
[9] J. D. McKay, R. J. Hung, V. Gaborieau, P. Boffetta, A. Chabrier, G. Byrnes, et al., “Lung Cancer Susceptibility Locus at 5p15.33,” Nature Genetics, Vol. 40, No. 12, 2008, pp. 1404-1406. doi:10.1038/ng.254
[10] D. Miki, M. Kubo, A. Takahashi, K. A. Yoon, J. Kim, G. K. Lee, et al., “Variation in TP63 is Associated with Lung Adenocarcinoma Susceptibility in Japanese and Korean populations,” Nature Genetics, 42, No. 10, 2010, pp. 893-896. doi:10.1038/ng.667
[11] T. Rafnar, P. Sulem, S. N. Stacey, F. Geller, J. Gudmundsson, A. Sigurdsson, et al., “Sequence Variants at the TERT-CLPTM1L Locus Associate with Many Cancer Types,” Nature Genetics, Vol. 41, No. 2, 2009, pp. 221-227. doi:10.1038/ng.296
[12] M. Fujieda, H. Yamazaki, T. Saito, K. Kiyotani, M. A. Gyamfi, M. Sakurai, et al., “Evaluation of CYP2A6 Denetic Polymorphisms as Determinants of Smoking Behavior and Tobacco-Related Lung Cancer Risk in Male Japanese Smokers,” Carcinogenesis, Vol. 25, No. 12, 2004, pp. 2451-2458. doi:10.1093/carcin/bgh258
[13] International HapMap Consortium, “The International HapMap Project,” Nature, Vol. 426, No. 6968, 2003, pp. 789-796. doi:10.1038/nature02168
[14] J. C. Barrett, B. Fry, J. Maller and M. J. Daly, “Haploview: Analysis and Visualization of LD and Haplotype Maps,” Bioinformatics, Vol. 21, No. 2, 2005, pp. 263-265. doi:10.1093/bioinformatics/bth457
[15] Y. Wang, P. Broderick, A. Matakidou, J. Vijayakrishnan, T. Eisen and R. S. Houlston, “Variation in TP63 is Associated with Lung Adenocarcinoma in the UK Population,” Cancer Epidemiology, Biomarkers and Prevention, Vol. 20, No. 7, 2011, pp. 1453-1462. doi:10.1158/1055-9965.EPI-11-0042
[16] Y. Wang, P. Broderick, A. Matakidou, T. Eisen and R. S. Houlston, “Role of 5p15.33 (TERT-CLPTM1L), 6p21.33 and 15q25.1 (CHRNA5-CHRNA3) Variation and Lung Cancer Risk in Never Smokers,” Carcinogenesis, Vol. 31, No. 2, 2010, pp. 234-238. doi:10.1093/carcin/bgp287
[17] K. Shiraishi, T. Kohno, H. Kunitoh, S. Watanabe, K. Goto, Y. Nishiwaki, et al., “Contribution of Nicotine Acetylcholine Receptor Polymorphisms to Lung Cancer Risk in a Smoking-Independent Manner in the Japanese,” Carcinogenesis, Vol. 30, No. 1, 2009, pp. 65-70. doi:10.1093/carcin/bgn257
[18] C. Wu, Z. Hu, D. Yu, L. Huang, G. Jin, J. Liang, et al., “Genetic Variants on Chromosome 15q25 Associated with Lung Cancer Risk in Chinese Populations,” Cancer Research, Vol. 69, No. 12, 2009, pp. 5065-5072. doi:10.1158/0008-5472.CAN-09-0081

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.