Simulation of small size divertor tokamak plasma edge at low density of plasma
Amr Hasheim Bekheit
.
DOI: 10.4236/ns.2012.41010   PDF    HTML   XML   4,119 Downloads   7,493 Views  

Abstract

A low density plasma edge of small size divertor tokamak has been modeling by “B2SOLPS0.5.2 D” fluid transport code. The results of modeling are: 1) Formation of the strong “ITB” has detected more reliable with discovery that, low density plasma is necessary and important condition for it to form. 2) Reduction of plasma density play significantly role in the formation of the strong ITB as global parameter, possibly through change in the steep density gradient which stabilize “ITG” mode. 3) The radial electric field of small size divertor tokamak plasma edge is plasma density dependence and maximum radial electric field shear is found at low plasma density. 4) In the “NBI” discharge the toroidal (parallel) velocity at low plasma density is co-current and upward direction. 5) The structure of plasma pressure and radial electric field in quiescent H-mode are obtained.

Share and Cite:

Bekheit, A. (2012) Simulation of small size divertor tokamak plasma edge at low density of plasma. Natural Science, 4, 68-72. doi: 10.4236/ns.2012.41010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tala, T.J., Heikkinen, J.A., Parail, V.V., Baranov, Yu.F. and Karttunen S.J. (2001) ITB formation in terms of ωE×B flow shear and magnetic shear s on JET. Plasma Physics and Controlled Fusion, 43, 507-523. doi:10.1088/0741-3335/43/4/309
[2] Chankin, A.V., Coster, D.P., Dux, R., Fuchs, Ch., Haas, G., Herrmann, A., Horton, L.D., Kallenb and Schneider, W (2006) SOLPS modelling of ASDEX upgrade H-mode plasma. Plasma Physics and Controlled Fusion, 48, 839- 869. doi:10.1088/0741-3335/48/6/010
[3] Tala, T.J., Parail, V.V., Becoulet, A. Corrigan, G., Heading, D.J. and Contributors to the EFDA-JET Workprogramme (2002) Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs. Plasma Physics and Controlled Fusion, 44, A495-A500. doi:10.1088/0741-3335/44/5A/355
[4] Baranov, Yu. F., Garbet, X., Hawkes, N.C., Alper, B., Barnsley, R. and the JET EFDA Contributors (2004) On the link between the q-profile and internal transport barriers. Plasma Physics and Controlled Fusion, 46, 1181- 1196. doi:10.1088/0741-3335/46/8/002
[5] Parail, V.V., Baranov, Yu.F., Challis, C.D., Cottrell, G.A., Fischer, B. and Ward D.J, (1999) Predictive modelling of JET optimized shear discharges. Nuclear Fusion, 39, 429- 437. doi:10.1088/0029-5515/39/3/310
[6] Crombé, K., Andrew, Y., Brix, M., Giroud, C., Hacquin, S. and Zastrow, K.D. (2005) Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region. Physical Review Letters, 95, 155003. doi:10.1103/PhysRevLett.95.155003
[7] Challis, C.D., Baranov, Yu.F., Conway, G.D., Gormezano, C., Gowers, C.W. and Zastrow, K.-D. (2001) Effect of q-profile modification by LHCD on internal transport barriers in JET. Plasma Physics and Controlled Fusion, 43, 861-879. doi:10.1088/0741-3335/43/7/303
[8] Challis, C.D., Litaudon, X., Tresset, G., Baranov, Yu.F., Bécoulet, A. and Contributors to the EFDA-JET Workprogramme (2002) Influence of the q-profile shape on plasma performance in JET. Plasma Physics and Controlled Fusion, 44, 1031-1055. doi:10.1088/0741-3335/44/7/301
[9] Hawkes, N.C., Andrew, Y., Challis, C.D., DeAngelis, R., Drozdov, V. and Contributors to the EFDA-JET Workprogramme (2002) The formation and evolution of extreme shear reversal in JET and its influence on local thermal transport. Plasma Physics and Controlled Fusion, 44, 1105,. doi:10.1088/0741-3335/44/7/304
[10] Burrell, K. et al. (1997) Effects of E × B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Physics of Plasmas, 4, 1499- 1519. doi:10.1063/1.872367
[11] Connor, J.W., Fukuda, T., Garbet, X., Gormezano, C., Mukhovatov , V. and the ITB Database Group, the ITPA Topical Group on Transport and Internal Barrier Physics (2004) A review of internal transport barrier physics for steady-state operation of tokamaks. Nuclear Fusion, 44, R1-R49. doi:10.1088/0029-5515/44/4/R01
[12] Wolf, R. (2003) Internal transport barriers in tokamak plasmas. Plasma Physics and Controlled Fusion, 45, R1- R91. doi:10.1088/0741-3335/45/1/201
[13] Sakamoto, Y., Suzuki, T., Ide, S., Koide, Y., Takenaga, H. and Rewoldt, G. (2004) Properties of internal transport barrier formation in JT-60U. Nuclear Fusion, 44, 876-882. doi:10.1088/0029-5515/44/8/006
[14] Fujita, T., Ide, S., Kamada, Y., Suzuki, T., Oikawa, T., Takeji, S. and Fukuda, T. (2001) Quasisteady high-confinement reversed shear plasma with large bootstrap current fraction under full noninductive current drive condition in JT-60U. Physical Review Letters, 87, 085001. doi:10.1103/PhysRevLett.87.085001
[15] Bekheit, A.H. (2010) Simulation of radial electric field and internal transport barrier formation in small size divertor tokamak plasma edge. Journal of Fusion Energy, 29, 285-289. doi:10.1007/s10894-010-9274-2
[16] Bekheit, A.H. (2008) Simulation of small size divertor tokamak plasma edge including self-consistent electric fields. Journal of Fusion Energy, 27, 338-345. doi:10.1007/s10894-008-9148-z
[17] Rozhansky, V., Kaveeva, E., Voskoboynikov, S., Coster, D.P. and Schneider, R. (2001) Simulation of tokamak edge plasma including self-consistent electric fields. Nuclear Fusion, 41, 387. doi:10.1088/0029-5515/41/4/305
[18] Quigley, E.D., Peeters, A.G., Mc, P.J., Apostoliceanu, M., Hobirk, J. and the ASDEX Upgrade Team (2004) Formation criteria and positioning of internal transport barriers in ASDEX Upgrade. Nuclear Fusion, 44, 1189-1196. doi:10.1088/0029-5515/44/11/004
[19] Ernst, D.R., Bonoli, P.T. , Catto, P.J., Dorland, W., Fiore, C.L., Granetz, R.S. and Alcator C-Mod Group (2004) Role of trapped electron mode turbulence in internal transport barrier control in the Alcator C-Mod Tokamak. Physics of Plasmas, 11, 2637-26478. doi:10.1063/1.1705653
[20] Angioni, C., Peeters, A.G., Garbet, X., Manini, A., Ryter F and ASDEX Upgrade Team (2004) Density response to central electron heating: theoretical investigations and experimental observations in ASDEX Upgrade. Nuclear Fusion, 44, 827-845. doi:10.1088/0029-5515/44/8/003
[21] Rozhansky, V., Kaveeva, E., Voskoboynikov, S., Counsell, G., Kirk, A. and the ASDEX Upgrade Team (2006) Modelling of radial electric field profile for different divertor configurations. Plasma Physics and Controlled Fusion, 48, 1425-1435. doi:10.1088/0741-3335/48/9/011
[22] Hirshman, S.P. and Sigmar, D.J. (1981) Neoclassical transport of impurities in tokamak plasmas. Nuclear Fusion, 21, 1079-1210. doi:10.1088/0029-5515/21/9/003
[23] Burrell, K.H, West, W.P, Doyle, E.J, Austin, M.E, Gohil, P. and Zeng, L. (2004) Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak. Plasma Physics and Controlled Fusion, 46, A165-A178.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.