Electromagnetic nature of the nuclear forces and a toroid model of nucleons in atomic nuclei
Kiril Kolikov, Dragiya Ivanov, Georgi Krastev
.
DOI: 10.4236/ns.2012.41008   PDF    HTML     5,694 Downloads   11,572 Views   Citations

Abstract

In this paper we consider nucleons as tori, rotating with a constant angular velocity around the straight line passing through their mass centre (geometric centre) and perpendicular to their plane of rotation. We theoretically determine the corresponding potential energy and the force of interaction between pairs of nucleons, using our precise analytical formulas for the electrostatic interaction between two spheres with arbitrary radii and charges, which we derive using experimentally obtained results for the radii and the masses of the nucleons. From the values for binding energy found through our method, it follows that nuclear forces are electromagnetic in nature. In terms of magnitude of the force of interaction between proton and neutron, we obtain that Coulomb's forces are short-range. Our toroid model explains the experimental results not only for binding energy, but also for the radius, magnetic moment and the spin of the nuclei of atoms.

Share and Cite:

Kolikov, K. , Ivanov, D. and Krastev, G. (2012) Electromagnetic nature of the nuclear forces and a toroid model of nucleons in atomic nuclei. Natural Science, 4, 47-56. doi: 10.4236/ns.2012.41008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Cook, N. (2006) Models of the atomic nucleus. Springer, Berlin.
[2] Krane, K. (1999) Introductory nuclear physics. Wiley- VCH, Hoboken.
[3] Martin, B. (2008) Nuclear and particle physics. 3th Edition, Wiley, Hoboken.
[4] Schopper, H., Altarelli, G., Grünewald, M. and Inoue, K. (2008) Elementary particles. Springer, Berlin.
[5] Salam, A. (1968) Weak and electromagnetic interactions. In: Svartholm, N., Ed., Elementary Particle Physics, Stockholm, 367.
[6] Weinberg, S. (1967) A model of leptons. Physical Review Letters, 19, 1264-1266. doi:10.1103/PhysRevLett.19.1264
[7] Glashow, S.L. (1979) Towards a unified theory—Threads in a tapestry. http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/glashow-lecture.pdf
[8] Hofstadter, R. (1956) Electron scattering and nuclear structure. Reviews of Modern Physics, 28, 214-2554. doi:10.1103/RevModPhys.28.214
[9] Burcham, W.E. (1963) Nuclear physics. McGraw-Hill book Co., Inc., San Francisco.
[10] Feynman, R. (1964) The Feynman lectures on physics: exercises. Addison Wesley Publishing Co., Boston.
[11] Kolikov, K., Ivanov, D., Krustev, G., Epitropov Y. and Bozhkov, S. (in press) Electrostatic interaction between two conducting spheres. Journal of Electrostatics.
[12] Christensen, J. (1990) The structure of an atom. Wiley, London.
[13] Brown, J. (1980) The physical science encyclopedia. Cornell University Press, New York.
[14] Кolikov, K., Ivanov, D. and Кrustev, G. (2011) Electromagnetic nature of the nuclear forces and a toroid model of nucleons in atomic nuclei. Scientific Research of the Union of Scientists in Bulgaria, Plovdiv, 283-300.
[15] Halliday, D., Resnick, R. and Walker, J. (2011) Fundamentals of physics. 9th Edition, John Wiley & Sons, Inc., New York.
[16] Standard model (2011). http://en.wikipedia.org/wiki/Standard_Model.
[17] University of Tennessee. Standard model (2011). http://electron6.phys.utk.edu/phys250/modules/module%206/standard_model.htm
[18] Fehling, D. (2011) The standard model of particle physics: A lunchbox’s guide. http://www.pha.jhu.edu/~dfehling/
[19] Bergman, D. (2000) The real proton. Foundations of Science, 3, 4.
[20] Toroidal ring model (2011). http://www.enotes.com/topic/Toroidal_ring_model
[21] Toroidal ring model (2011). http://en.wikipedia.org/wiki/Toroidal_ring_model
[22] Twain, M. (1995) The undiscovered physics. http://groupkos.com/mtwain/TheProton.pdf.
[23] Kolikov, K., Krastev, G. and Epitropov, Y. (2010) Theory of the allocation of the electrical charge of the proton and its magnetic moment. Scientific Research of the Union of Scientists in Bulgaria, Plovdiv, 433-439.
[24] Mohr, P., Taylor, B. and Newell, D. (2008) CODATA recommended values of the fundamental physical constants: 2006. http://arxiv.org/abs/0801.0028.
[25] Sick, I. (2003) On the rms-radius of the proton. Physics Letters B, 576, 62-67. doi:10.1016/j.physletb.2003.09.092
[26] Sardin, G. (1999) Fundamentals of the orbital conception of elementary particles and of their application to the neutron and nuclear structure. Physics Essays, 12, 204. doi:10.4006/1.3025378
[27] Miller, G. (2008) Non-spherical shapes of the proton: existence, measurement, and computation. Nuclear Physics News, 18, 12-16. doi:10.1080/10506890802123721
[28] Gellert, W., K?stner, H. and Neuber, S. (1983) Mathematical encyclopedic dictionary. Science and Art, Sofia, 585.
[29] Kirscher, J., Griesshammer, H., Shukla, D. and Hofmann, H. (2010) Universal correlations in pion-less EFT with the resonating group method: Three and four nucleons. European Physical Journal A, 44, 239-256. doi:10.1140/epja/i2010-10939-5
[30] Wang, L.-B., Mueller, P., Bailey, K. et al. (2004) Laser spectroscopic determination of the 6He nuclear charge radius. Physical Review Letters, 93, 142501. doi:10.1103/PhysRevLett.93.142501
[31] Smythe, W. (1968) Static and dynamic electricity, McGraw-Hill, New York.
[32] Jackson, J. (1998) Classical electrodynamics. Wiley, New York.
[33] Soules, J. (1990) Precise calculation of the electrostatic force between charged spheres including induction effects. American Journal of Physics, 58, 1195-1199. doi:10.1119/1.16251
[34] Larson, C. and Goss, E. (1970) A coulomb’s law balance suitable for physics majors and nonscience students. American Journal of Physics, 38, 1349-1352. doi:10.1119/1.1976097
[35] Slisko, J. and Brito-Orta, R. (1998) On approximate formulas for the electrostatic force between two conducting spheres. American Journal of Physics, 66, 352-355. doi:10.1119/1.18864

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.