Direct Optical Energy Gap in Amorphous Silicon Quantum Dots

DOI: 10.4236/jmp.2011.212185   PDF   HTML   XML   5,340 Downloads   10,135 Views   Citations


A theoretical investigation of photoluminescence spectra for amorphous silicon quantum-dots (1 - 4 nm), at room temperature, were used to study the effect of both spatial and quantum confinements spontaneously via determination the energy peak of maximum intensity transition. The results show a continuous shifting toward low energy peak (red shift) and toward high-energy peak (blue shift), with the decreasing of quantum dot size, due to spatial and quantum confinements respectively. These results have leaded us to believe that such quantum dot size (1 nm) changes the nature of amorphous silicon optical band gap from indirect to direct transition material.

Share and Cite:

N. Abdul-Ameer and M. Abdulrida, "Direct Optical Energy Gap in Amorphous Silicon Quantum Dots," Journal of Modern Physics, Vol. 2 No. 12, 2011, pp. 1530-1537. doi: 10.4236/jmp.2011.212185.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Koga, K. Nishio, T. Yamaguchi and F. Yonezawa, “Tight-Binding Electronic State Calculations of Silicon Nanostructures with local Disorders: Origin of the F Band Luminescence From Porous Silicon,” Journal of the Physical Society of Japan, Vol. 70, No. 8, 2001, pp. 2478-2484. doi:10.1143/JPSJ.70.2478
[2] J. Koga, K. Nishio, T. Yamaguchi and F. Yonezawa, “The Effects of the Point-Group Symmetry in Silicon Nanostructures on Radiative Recombination Time,” Jour- nal of the Physical Society of Japan, Vol. 70, No. 10, 2001, pp. 3143-3148. doi:10.1143/JPSJ.70.3143
[3] F. Yonezawa, K. Nishio, J. Koga and T. Yamaguchi, “Theoretical Prediction for Realization of Spectra-con- trollable High-Efficient Photoluminescent Devices By Means of Silicon Nanostructures,” Journal of the Optoelectronics and Advanced Materials, Vol. 4, No. 3, 2002, pp. 569-574.
[4] C. J. Murphy and J. L. Coffer, “Quantum Dots: A Pri- mer,” Focal Point, Vol. 56, No.1, 2002, pp. 16A-26A.
[5] T. F. Jiang, X. Tong and S. Chu, “Self-Interaction-Free Density Functional Theoretical Study of the Electronic Structure of Spherical and Vertical Quantum Dots,” Physical Review B, Vol. 63, 2001, pp. 045317-1 -045317-9.
[6] Y. Alhassid, “The Statistical Theory of Quantum Dots,” Reviews of Modern Physics, Vol. 72, No. 4, 2000, pp. 895-968. doi:10.1103/RevModPhys.72.895
[7] J. S. Williams, R. G. Elliman, H. H. Tan, P. Lever, J. Wong-Leung and C. Jagadish, “Production And Process- ing of Semiconductor Nanocrystals And Nanostructures for Photonic Applications,” Materials Forum, Vol. 26, 2002, pp. 74-80.
[8] C. Kittle “Introduction to Solid State Physics,” 8th Edi- tion, John Wiley& Sons, Hoboken, 2004.
[9] T. Toyama, Y. Nakai, A. Asano and H. Okamoto, “Optical Transitions in Silicon Nanocrystals near Structural Transition Region to Amorphous Silicon,” Journal of Non-Crystalline Solids, Vol. 299-302, 2002, pp. 290-294. doi:10.1016/S0022-3093(01)01006-7
[10] I. Sychugov, R. Juhasz, A. Galeckas, J. Valenta and J. Linnros, “Single Dot Optical Spectroscopy of Silicon Nanocrystals: Low Temperature Measurements,” Optical Materials, Vol. 27, No. 5, 2005, pp. 973-979. doi:10.1016/j.optmat.2004.08.046
[11] K. Nishio J. Koga, T. Yamaguchi and F. Yonezawa, “Light Emission Properties of Amorphous Silicon Quantum Dots,” Journal of Non-Crystalline Solids, Vol. 312- 314, 2002, pp. 323-326. doi:10.1016/S0022-3093(02)01705-2
[12] K. Nishio J. Koga, T. Yamaguchi and F. Yonezawa, “Theoretical Study of Light-Emission Properties of Amorphous Silicon Quantum Dots,” Physical Review B, Vol. 67, No. 19, 2003, pp. 195304-1-195304-5. doi:10.1103/PhysRevB.67.195304
[13] H.-S. Kwach, Y. Sun, Y.-H. Cho, N.-M. Park and S.-J. Park, “Anomalous Temperature Dependence of Optical Emission in Visible-Light-Emitting Amorphous Silicon Quantum Dots,” Applied Physics Letters, Vol. 83, No. 14, 2003, pp. 2901-2903.
[14] N.-M. Park, T.-S. Kim and S.-J Park, “Band Gap Engineering of amorphous silicon quantum dots for Light- Emitting Diodes,” Applied Physics Letters, Vol. 78, No. 17, 2001, pp. 2575-2577. doi:10.1063/1.1367277
[15] N.-M. Park, C.-J. Choi, T.-Y. Seong and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Physical Review Letters, Vol. 86, No. 7, 2001, pp. 1355-1357. doi:10.1103/PhysRevLett.86.1355
[16] T.-W. Kim, C.-H. Cho, B.-H. Kim and S.-J. Park, “Quantum Confinement Effect in Crystalline Silicon Quantum Dots in Silicon Nitride Grown Using SiH4 and NH3,” Applied Physics Letters, Vol. 88, No. 12, 2006, pp. 123102-1-123102-3. doi:10.1063/1.2187434
[17] S. M. Sze, “Semiconductors Devices Physics and Technology,” 3th Edition, John Wiley &Sons, Inc., Hoboken, 2007.
[18] M. J. Estes and G. Moddel, “Luminescence from Amorphous Silicon Nanostructures,” Physical Review B, Vol. 54, No. 20, 1996, pp. 14633-14641. doi:10.1103/PhysRevB.54.14633
[19] Y. kamemitus,Y. Fukunishi and T. Kushida, “Decay Dynamic of Visible Luminescence in Amorphous Silicon Nanoparticles,” Applied Physics Letters, Vol. 77, No. 2, 2000, pp. 211-213. doi:10.1063/1.126927
[20] S. A. Maksimenko, G. Y. Slepyan, N. N. Lrdentsove, V. P. Kalosha, A. Hoffmann and D. Bimberg, “Light Confinement in Quantum Dots,” 8th International Sympo- sium on Nanostructures: Physics and Technology, St Pe- tershurg, June 19-23 2000, pp. 219-223.
[21] M. J. Estes and G. Moddel, “A Model of Size-Dependent Photoluminescence in Amorphous Silicon Nanostructures: Comparison with Observations of Porous Silicon,” Applied Physics Letters, Vol. 68, No. 13, 1996, pp. 1814- 1816. doi:10.1063/1.116022
[22] J. M. Martinez-Duart, R. J. Martin-Palma and F. Agullo- Rueda, “Nanotechnology for Microelectronics and Optoelectronics,” Elesvier, Amsterdam, 2006.
[23] [23] N.-M. Park, S.-H. Jeon, H.-D.Yung, H.Hwang, S.-J. Park and S.-H. Choi, “Size-dependent charge storage in amorphous silicon quantum dots embedded in silicon nitride,” Applied Physics Letters, Vol. 83, No. 5, 2003, pp. 1014-1016. doi:10.1063/1.1596371
[24] D. J. Dunstan and F. Boulitrop, “Photoluminescence in Hydrogenated Amorphous Silicon,” Physical Review B, Vol. 30, No. 10, 1984, pp. 5945-5957.
[25] T. Tiedje, B. Abeles and B. G. Brooks, “Energy Transport and Size Effects in The Amorphous-Silicon Multilayer Structures,” Physical Review Letters, Vol. 54, No. 23, 1985, pp. 2545-2547. doi:10.1103/PhysRevLett.54.2545
[26] J. I. Pankove, “Semiconductors and Semimetals Hydrogenated Amorphous Silicon Part B, Optical Properties,” Academic Press, Cambridge, 1984.
[27] M. A. Green and G. Conilbeer, “Silicon Quantum Dot Based Solar Cells: Addressing the Issues of Doping, Voltage and Current Transport,” 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, 6-10 September 2010, pp. 182-190.
[28] K. Tanaka, E. Moruyama, T. Shimada and H.Okamoto, “Amorphous Silicon,” John Wiley & Sons Ltd., Hoboken, 1999.
[29] J. Tauc, “Amorphous and Liquid Semiconductors,” Plenum, New York, 1974.
[30] F. Giorgis, C. F. Pirri, C.Vinegoni and L. Pavesi, “Luminescence Processes in Amorphous Hydrogenated Silicon- Nitride Nanometric Multilayers,” Physical Review B, Vol. 60, No. 16, 1999, pp. 11572-11576. doi:10.1103/PhysRevB.60.11572
[31] S. Kivelson and C. D. Gelatt Jr., “Photoluminescence in a Disordered Insulators the Trapped-Exciton Model,” Physical Review B, Vol. 26, No. 8, 1982, pp. 4646-4673. doi:10.1103/PhysRevB.26.4646
[32] Y. kamemitus,Y. Fukunishi and T. Kushida, “Decay Dynamics of Visible Luminescence in Amorphous Silicon Nanoparticles,” Applied Physics Letters, Vol. 77, No. 2, 2000, pp: 211-213.
[33] B. Abeles and T. Tiedje, “Amorphous Semiconductor Superlattices,” Applied Physics Letters, Vol. 51, No. 21, 1983, pp. 2003-2005. doi:10.1103/PhysRevLett.51.2003
[34] K. E. Anderson, C. Y. Fong and W. E. Pickett, “Quantum Confinement in CdSe Nanocrystallites,” Journal of Non- Crystalline Solids, Vol. 299-302, 2002, pp. 1105-1110.
[35] A. Dumbrava, V. Ciupina and G. Prodan, “Dependence on Grain Size and Morphology of Zinc Sulfide Particles by the Synthesis Rout,” Romanian Journal of Physics, Vol. 50, No. 7-8, 2005, pp. 831-836.
[36] N.-M. Park, T.-Y. Kim, G. Y. Sung, B.-H. Kim, S.-J. Park, K. S. Cho, J. H. Shin, J.-K. Lee and M. Nastasi, “The Dot Size Effect of Amorphous Silicon Quantum Dot on 1.54 μm Er Luminescence,” Proceeding of Materials Research Society Symposium, Vol. 817, 2004, pp. L1.4.1-L1.4.6.
[37] N.-M. Park, T.-Y. Kim, K.-H. Kim, G. Y. Sung, B.-H. Kim, S.-J. Park, K. S. Cho, J. H. Shin, J.-K. Lee and M. Nastasi, “Effect of Amorphous Si Quantum-Dot Size on 1.54 μm Luminescence of Er,” Journal of Electrochemical Society, Vol. 152, No. 6, 2005, pp. G445-G447. doi:10.1149/1.1901662
[38] W. G. J. H. M. Sark, C. De M. Donega, C. Harkisoen. R. Kinderman, J. A. M. van Roosmalen, R. E. I. Schropp and E. H. Lysen, “Improvement of Spectral Response of Solar Cells By Deployment of Spectral Converters Containing Semiconductor Nanocrystals,” Solar Energy Material & Solar Cells, Vol. 87, 2005, pp. 395-409.
[39] M. Jaros, “Physics and Applications of Semiconductor Microstructures,” Clarendon Press, Oxford, 1989.
[40] T. Takagahara and K. Takeda, “Theory of the Quantum Confinement Effect on Excitons in Quantum Dots of Indirect-Gap Materials,” Physical Review B, Vol. 46, No.23, 1992, pp. 15578-15581. doi:10.1103/PhysRevB.46.15578

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.