Share This Article:

Towards Earthquake Shields: A Numerical Investigation of Earthquake Shielding with Seismic Crystals

Abstract Full-Text HTML Download Download as PDF (Size:1365KB) PP. 63-69
DOI: 10.4236/oja.2011.13008    3,138 Downloads   7,495 Views   Citations

ABSTRACT

Authors numerically demonstrate that the seismic surface waves from an earthquake can be attenuated by a seismic crystal structure constructed on the ground. In the study, seismic crystals with a lattice constant of kilometer are investigated in the aspect of band gaps (Stop band), and some design considerations for earthquake shielding are discussed for various crystal configurations in a theoretical manner. Authors observed in their FDTD based 2D wave simulation results that the proposed earthquake shield can provide a decreasing in magnitude of surface seismic waves. Such attenuation of seismic waves might reduce the damage in an earthquake.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Alagoz and S. Alagoz, "Towards Earthquake Shields: A Numerical Investigation of Earthquake Shielding with Seismic Crystals," Open Journal of Acoustics, Vol. 1 No. 3, 2011, pp. 63-69. doi: 10.4236/oja.2011.13008.

References

[1] T. Miyashita, “Sonic Crystals and Sonic Wave-Guides,” Measurement Science and Technology, Vol. 16, No. 5, 2005, pp. 47-63. doi:10.1088/0957-0233/16/5/R01
[2] X. D. Zhanga and Z. Y. Liu, “Negative Refraction of Acous- tic Waves in Two-Dimensional Phononic Crystals,” Applied Physics Letters, Vol. 85, No. 2, 2004, pp. 341-343. doi:10.1063/1.1772854
[3] M. M. Sigalas, “Theoretical Study of Three Dimensional Elastic Band Gaps with the Finite-Difference Time-Do- main Method,” Journal of Applied Physics, Vol. 87, No. 6, 2000, pp. 3122-3125. doi:10.1063/1.372308
[4] T. Miyashita and C. Inoue, “Numerical Investigations of Transmission and Waveguide Properties of Sonic Crys- tals by Finite-Difference Time-Domain Method,” Japa- nese Journal of Applied Physics, Vol. 40, 2001, pp. 3488- 3492. doi:10.1143/JJAP.40.3488
[5] M. S. Kushwaha and B. Djafari-Rouhani, “Sonic-Stop bands for periodic Arrays of Metallics Rods: Honeycomb Structure,” Journal of Sound and Vibration, Vol. 218, No. 10, 1998, pp. 697-709. doi:10.1006/jsvi.1998.1839
[6] M. Hirsekorn, “Small-Size Sonic Crystals with Strong Attenuation Bands in the Audible Frequency Range,” Ap- plied Physics Letters, Vol. 84, No. 17, 2004, p.3364. doi:10.1063/1.1723688
[7] E. N. Economou and M. M. Sigalas, “Classical Wave Pro- pagation in Periodic Structures: Cermet versus Network Topology,” Physical Reviews B, Vol. 48, No. 18, 1993, pp. 13434-13438. doi:10.1103/PhysRevB.48.13434
[8] N. K. Batra, P. Matic and R. K. Everett, “Sonic Crystal Composites for Selective Noise Reduction,” Proceedings of IEEE Ultrasonic Symposium, Vol. 1, 8-11 October 2002, pp. 547-550.
[9] E. Ozbay, K. Guven, K. Aydin, “Metamaterials with Ne- gative Permeability and Negative Refractive Index: Experiments and Simulations,” Journal of Optics A: Pure Applied Optics, Vol. 9, No. 9, 2007, pp. S301-307. doi:10.1088/1464-4258/9/9/S04
[10] J. Sun, C. C. Chan, X. Y. Dong and P. Shum, “Tunable Photonic Band Gaps in a Photonic Crystal Fiber Filled with Low Index Material,” Journal of Optoelectronics and Advanced Materials, Vol. 8, 2006, pp. 1593-1596.
[11] E. Yablonovitch, “Photonic Band-Gap Crystals,” Journal of Physical Condensed Matter, Vol. 5, No. 16, 1993, p. 2443. doi:10.1088/0953-8984/5/16/004
[12] M. Ciobanu, L. Preda, A. Popescu, M. Mihailescu and M. I. Rusu, “Designing Tunable Photonic Crystals with Band Gaps in Microwave Range,” Journal of Computational and Theoretical Nanoscience, Vol. 7, No. 6, 2010, pp. 1032- 1034. doi:10.1166/jctn.2010.1449
[13] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, C. Lopez, J. Sanchez-Dehesa and J. Llinares, “Two-Dimen- sional Elastic Bandgap Crystal to Attenuate Surface Waves,” Journal of Lightwave Technology, Vol. 17, No. 11, 1999, pp. 2196-2201. doi:10.1109/50.803011
[14] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. S’anchez-Dehesa, C. L’opez, and J. Llinares, “Attenuation of Surface Elastic Waves (Earthquakes) by Phononic Crystals,” Physical Reviews B, Vol. 59, No. 19, 1999, pp. 12169-12172. doi:10.1103/PhysRevB.59.12169
[15] S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert and V. Laude, “Evidence for Complete Surface Wave Band Gap in a Piezoelectric Phononic Crystal,” Physical Reviews E, Vol. 73, No. 6, 2006, p. 065601(4). doi:10.1103/PhysRevE.73.065601
[16] V. Laude, M. Wilm, S. Benchabane and A. Khelif, “Full Band Gap for Surface Acoustic Waves in a Piezoelectric Phononic Crystal,” Physical Reviews E, Vol. 71, No. 3, 2005, p. 036607(7). doi:10.1103/PhysRevE.71.036607
[17] Y. Tanaka and S. Tamura, “Two-Dimensional Phononic Crystals: Surface Acoustic Waves,” Physica B: Conden- sed Matter, Vol. 263-264, 1999, pp. 77-80. doi:10.1016/S0921-4526(98)01197-1
[18] R. Mart?nez-Salaa, C. Rubioa, L. M. Garcia-Raffib, J. V. San- chez-Pereza, E. A. Sanchez-Pereza and J. Linaresa, “Con- trol of Noise by Trees Arranged Like Sonic Crystals,” Journal of Sound and Vibration, Vol. 291, No. 1-2, 2006, pp. 100-106. doi:10.1016/j.jsv.2005.05.030
[19] J. V. Sanchez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Llinares and F. Galvez, “Sound Attenuation by Two-Dimensional Array of Rigid Cylinders,” Applied Physics Letters, Vol. 80, No. 24, 1998, pp. 5325-5328. doi:10.1103/PhysRevLett.80.5325
[20] M. Brun, S. Guenneau and A. B. Movchan, “Achieving Control of In-Plane Elastic Waves,” Applied Physics Let- ters, Vol. 94, No. 6, 2009, p. 061903(3). doi:10.1063/1.3068491
[21] M. Farhat, S. Guenneau and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Applied Physics Letters, Vol. 103, No. 2, 2009, p. 024301(4). doi:10.1103/PhysRevLett.103.024301
[22] L. Y. Wu and L. W. Chen, “The Dispersion Characteristics of Sonic Crystals Consisting of Elliptic Cylinders,” Jour- nal of Physics D: Applied Physics, Vol. 40, No. 23, 2007, pp. 7579-7583. doi:10.1088/0022-3727/40/23/051
[23] C. Qiu, X. Zhang and Z. Liu, “Far-Field Imaging of Aco- ustic Waves by a Two-Dimensional Sonic Crystal,” Phys Reviev B, Vol. 71, No. 5, 2005, p. 054302(6). doi:10.1103/PhysRevB.71.054302
[24] S. Alagoz and B. B. Alagoz, “Frequency-Controlled Wave Focusing by a Sonic Crystal Lens,” Applied Acoustics, Vol. 70, No. 11-12, 2009, pp. 1400-1405. doi:10.1103/PhysRevB.71.054302
[25] L. E. Kinsler, A. R. Frey, B. Coppens and J. V. Sanders, “Fundamentals of Acoustics,” John Wiley & Sons Inc., New York, 1982.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.