Ultrasound Poroelastic Tissue Typing

Abstract

Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a gel medium filled by poroelastic spherical cells is studied. The equation of fast compressional wave, the phase velocity and the attenuation as a function of the elasticity, porosity and concentration of the cells into the gel matrix are investigated. The outcomes of the theory agree with the preliminary measurements done on PVA gel scaffolds inseminated by porcine liver cells at various concentrations. The feasibility of a non-invasive technique for the health assessment of soft biological tissues steaming by the model is analyzed.

Share and Cite:

P. Chiarelli, B. Vinci, A. Lanatà, V. Gismondi and S. Chiarelli, "Ultrasound Poroelastic Tissue Typing," Open Journal of Acoustics, Vol. 1 No. 3, 2011, pp. 55-62. doi: 10.4236/oja.2011.13007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. A. Duck, “Acoustic Properties of Tissue at Ultrasonic Frequencies,” Academic Press, London, New York, 1990, pp. 75-99.
[2] F. W. Kremkau, R. W. Barnes and C. P. McGraw, “Ultrasonic Attenuation and Propagation Speed in Normal Human Brain,” Journal of Acoustical Society of American, Vol. 70, No. 1, 1981, pp. 29-38. doi:10.1121/1.386578
[3] J. W. Wladimiroff, I. L. Craft and D.G. Talbert, “In Vitro Measurements of Sound Velocity in Human Fetal Brain Tissue,” Ultrasound in Medicine & Biology, Vol. 1, No. 4, 1975, pp. 377-382. doi:10.1016/0301-5629(75)90125-8
[4] P. Chiarelli, et al., “High Frequency Poroelastic Waves in Hydrogel,s” Journal of Acoustical Society of American, Vol. 127, No. 3, 2010, pp. 1197-1207. doi:10.1121/1.3293000
[5] D. De Rossi, A. Nannini and C. Domenici, “Artificial Sensing Skin Mimicking Mechanoelectrical Conversion Properties of Human Dermis,” IEEE Transaction on Biomedical Engineering, Vol. 35, No. 8, 1988, pp. 3-92. doi:10.1109/10.1343
[6] S. Lochhead, D. Bradwell, R. Chopra and M. J. Bronskill, “A Gel Phantom for the Calibration of MR-Guided Ul- trasound Thermal Therapy,” Proceedings of 2004 IEEE Ultrasonics Symposium, Montreal, Vol. 2, 23-27 August 2004, pp. 1481-1483.
[7] G. Divkovic, M. Liebler, K. Braun, T. Dreyer, P. Huber and J. Jenne, “Thermal Properties and Changes of Acoustic Parameters in an Egg White Phantom during Heating and Coagulation by High Intensity Focused Ultrasound,” Ultrasound in Medicine Biology, Vol. 33, No. 6, 2007, pp. 981-986.
[8] M. Ziol, et al., “Noninvasive assessment of Liver Fibrosis by Measurement of Stiffness in Patient with Chronic He- patitis C,” Hepatology, Vol. 41, No. 1, 2005, pp. 48-54. doi:10.1002/hep.20506
[9] G. P. Berry, J. C. Bamber, C. G. Armstrong, N. R. Miller and P. E. Barbonne, “Toward an Acoustic Model-Based Poroelasticity Imaging Method: I. Theoretical Foundation,” Ultrasound in Medicine Biology, Vol. 32, No. 4, 2006, pp. 547-567. doi:10.1016/j.ultrasmedbio.2006.01.003
[10] J. Bercoff, M. Tanter and M. Fink, “Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping,” IEEE Transactions on Ultrasonics, Ferroelec- trics and Frequency Control, Vol. 51, No. 4, 2004, pp. 396-409. doi:10.1109/TUFFC.2004.1295425
[11] M. L. Mather and C. Baldock, “Ultrasound Tomography Imaging of Radiation Dose Distributions in Polymer Gel Dosimeters: Preliminary Study,” Medical Physics, Vol. 30, No. 8, 2003, pp. 2140-2148. doi:10.1118/1.1590751
[12] X. Yang and R. O. Cleveland, “Time Domain Simulation of Nonlinear Acoustic Beams Generated by Rectangular Piston with Application to Harmonic Imaging,” Journal of Acoustical Society of American, Vol. 171, No. 1, 2005, pp. 113-123.
[13] J. C. Bacri, J. M. Courdille, J. Dumas and R. Rajaonarison, “Ultrasonic Waves: A Tool for Gelation Process Measurements,” Journal of Physique Letters, Vol. 41, No. 15, 1980, pp. 369-372.
[14] F. A. Duck, “Acoustic Properties of Tissue at Ultrasonic Frequencies,” Academic Press, London, New York, 1990, pp. 112-113.
[15] M. A. Biot, “General Theory of Three-Dimensional Con- solidation,” Journal of Applied Physics, Vol. 12, No. 2, 1941, pp. 155-164. doi:10.1063/1.1712886
[16] M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. High Frequency Range,” Journal of Acoustical Society of American, Vol. 28, No. 2, 1956, pp. 179-191.
[17] M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” Journal of Acoustical Society of American, Vol. 28, No. 2, 1956, pp. 168-178.
[18] M. A. Biot, “The Elastic Coefficients of the Theory of Consolidation,” Journal of Applied Mechanics, Vol. 24, No. , 1957, pp. 594-601.
[19] D. L. Johnson, “Elastodynamics of Gels,” Journal of Che- mical Physics, Vol. 77, No. 3, 1982, pp. 1531-1539. doi:10.1063/1.443934
[20] R. N. Chandler, “Transient Streaming Potential Measure- ments on Fluid-Saturated Porous Structures: An Experi- mental Verification of Biot’s Slow Wave in the Quasi- Static Limit,” Journal of Acoustical Society of America, Vol. 70, No. 1, 1981, pp. 116-121. doi:10.1121/1.386689
[21] A. Peters and S. J. Candau, “Kinetics of Swelling of Sphe- rical and Cylindrical Gels,” Macromolecules, Vol. 21, No. 7, 1988, pp. 2278-2282. doi:10.1021/ma00185a068
[22] D. L. Johnson, “Equivalence between Fourth Sound in Li- quid He II at Low Temperature and the Biot Slow Wave in Consolidated Porous Media,” Applied Physics Letters, Vol. 37, No. 12, 1980, pp. 1065-1067. doi:10.1063/1.91878
[23] J. G. Berryman, “Confirmation of Biot’s Theory,” Ap- plied Physics Letters, Vol. 37, No. 4, 1980, pp. 382-384. doi:10.1063/1.91951
[24] B. J. Roth, “The Electrical Conductivity of Tissues,” In: J. D. Bronzino, Ed., The Biomedical Engineering Handbook, 2nd Edition, CRC Press LLC, Boca Raton, 2000.
[25] T. Naganishi, M. Suzuki and H. Ohigashi, “Ultrasonic Transducers,” United States Patent No. 4.296.349, 1981.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.